This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
/*
Author of all code: Pedro BIGMAN Dias
Last edit: 15/02/2021
*/
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
#pragma GCC optimize("Ofast")
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <string>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <queue>
#include <deque>
#include <list>
#include <iomanip>
#include <stdlib.h>
#include <time.h>
#include <cstring>
#include "books.h"
using namespace std;
typedef long long int ll;
typedef unsigned long long int ull;
typedef long double ld;
#define REP(i,a,b) for(ll i=(ll) a; i<(ll) b; i++)
#define pb push_back
#define mp make_pair
#define pl pair<ll,ll>
#define ff first
#define ss second
#define whole(x) x.begin(),x.end()
#define DEBUG(i) cout<<"Pedro Is The Master "<<i<<endl
#define INF 500000000LL
#define EPS 0.00000001
#define pi 3.14159
#define VV(vvvv,NNNN,xxxx); REP(i,0,NNNN) {vvvv.pb(xxxx);}
ll mod=1000000007LL;
template<class A=ll>
void Out(vector<A> a) {REP(i,0,a.size()) {cout<<a[i]<<" ";} cout<<endl;}
template<class A=ll>
void In(vector<A> &a, ll N) {A cur; REP(i,0,N) {cin>>cur; a.pb(cur);}}
class ST
{
public:
ll N;
class SV //seg value
{
public:
ll a;
SV() {a=0LL;}
SV(ll x) {a=x;}
SV operator & (SV X) {SV ANS(a+X.a); return ANS;}
};
class LV //lazy value
{
public:
ll a;
LV() {a=0LL;}
LV(ll x) {a=x;}
LV operator & (LV X) {LV ANS(a+X.a); return ANS;}
};
SV upval(ll c) //how lazy values modify a seg value inside a node, c=current node
{
SV X(p[c].a+(range[c].ss-range[c].ff+1)*lazy[c].a);
return X;
}
SV neuts; LV neutl;
vector<SV> p;
vector<LV> lazy;
vector<pl> range;
ST() {N=0LL;}
ST(vector<ll> arr)
{
N = (ll) 1<<(ll) ceil(log2(arr.size()));
REP(i,0,2*N) {range.pb(mp(0LL,0LL));}
REP(i,0,N) {p.pb(neuts);}
REP(i,0,arr.size()) {SV X(arr[i]); p.pb(X); range[i+N]=mp(i,i);}
REP(i,arr.size(),N) {p.pb(neuts); range[i+N]=mp(i,i);}
ll cur = N-1;
while(cur>0)
{
p[cur]=p[2*cur]&p[2*cur+1];
range[cur]=mp(range[2*cur].ff,range[2*cur+1].ss);
cur--;
}
REP(i,0,2*N) {lazy.pb(neutl);}
}
void prop(ll c) //how lazy values propagate
{
lazy[2*c]=lazy[c]&lazy[2*c]; lazy[2*c+1]=lazy[c]&lazy[2*c+1];
lazy[c]=neutl;
}
SV query(ll a,ll b, ll c=1LL) //range [a,b], current node. initially: query(a,b)
{
ll x=range[c].ff; ll y=range[c].ss;
if(y<a || x>b) {return neuts;}
if(x>=a && y<=b) {return upval(c);}
prop(c);
p[c]=upval(2*c)&upval(2*c+1);
SV ans = query(a,b,2*c)&query(a,b,2*c+1);
return ans;
}
void update(LV s, ll a, ll b, ll c=1LL) //update LV, range [a,b], current node, current range. initially: update(s,a,b)
{
ll x=range[c].ff; ll y=range[c].ss;
if(y<a || x>b) {return ;}
if(x>=a && y<=b)
{
lazy[c]=s&lazy[c];
return;
}
prop(c);
update(s,a,b,2*c); update(s,a,b,2*c+1);
p[c]=upval(2*c)&upval(2*c+1);
}
};
vector<vector<ll> > CycleDecomp(vector<int> p) //cycle decomposition of permutation
{
ll N = p.size(); vector<vector<ll> > ans; vector<ll> cur;
vector<bool> visited; REP(i,0,N) {visited.pb(false);}
ll node;
REP(i,0,N)
{
if(visited[i]) {continue;}
node=i; cur.pb(node); node=p[node];
while(node!=i)
{
cur.pb(node); node=p[node];
}
REP(i,0,cur.size()) {visited[cur[i]]=true;}
ans.pb(cur);
cur.clear();
}
return ans;
}
class WDiGraph
{
public:
ll N;
vector<vector<pl> > adj;
vector<bool> visited;
vector<bool> pr;
WDiGraph(vector<vector<pl> > ad)
{
adj=ad; N=adj.size(); REP(i,0,N) {visited.pb(false); pr.pb(false);}
}
vector<ll> Djikstra(ll s)
{
vector<ll> d; REP(i,0,N) {d.pb(INF);}
d[s]=0;
priority_queue<pl> q;
q.push(mp(0,s));
ll cur;
while(!q.empty())
{
cur=q.top().ss; q.pop();
if(pr[cur]) {continue;}
pr[cur]=true;
REP(i,0,adj[cur].size())
{
if(d[adj[cur][i].ff]>d[cur]+adj[cur][i].ss)
{
d[adj[cur][i].ff]=d[cur]+adj[cur][i].ss;
q.push(mp(-d[adj[cur][i].ff],adj[cur][i].ff));
}
}
}
return d;
}
};
ll minimum_walk(vector<int> p, int s)
{
ll N = p.size();
vector<vector<ll> > C = CycleDecomp(p);
vector<pl> range;
REP(i,0,C.size()) {range.pb({*min_element(whole(C[i])),*max_element(whole(C[i]))});}
vector<ll> xx; VV(xx,N-1,0); ST S(xx);
REP(i,0,range.size()) {if(range[i].ff==range[i].ss) {continue;} S.update(1,range[i].ff,range[i].ss-1);}
vector<bool> in; VV(in,N-1,false);
REP(i,0,N-1) {if(S.query(i,i).a>0) {in[i]=true;}}
ll l=0,r=N-2;
while(l<s && !in[l]) {l++;}
while(r>=s && !in[r]) {r--;}
ll ans=0LL;
REP(i,l,r+1) {if(!in[i]) {ans+=2LL;}}
REP(i,0,N) {ans+=((ll) (abs(p[i]-i)));}
ll T=s; while(T<N-1 && in[T]) {T++;}
ll SS;
REP(i,0,C.size()) {sort(whole(C[i]));}
vector<vector<pl> > adj; VV(adj,C.size(),{});
vector<ll> rep; VV(rep,N,-1); REP(i,0,C.size()) {REP(j,0,C[i].size()) {rep[C[i][j]]=i;}}
SS=rep[s]; T=rep[T];
vector<ll>::iterator it;
REP(i,0,C.size())
{
REP(j,i+1,C.size())
{
it = lower_bound(whole(C[j]),range[i].ff);
if(it==C[j].end() || (*it)>range[i].ss) {continue;}
it = lower_bound(whole(C[i]),range[j].ff);
if(it==C[i].end() || (*it)>range[j].ss) {continue;}
adj[i].pb({j,0}); adj[j].pb({i,0});
}
}
REP(i,0,N-1) {adj[rep[i]].pb({rep[i+1],1LL}); adj[rep[i+1]].pb({rep[i],1LL});}
WDiGraph G(adj); vector<ll> d = G.Djikstra(SS); ans+=2LL*d[T];
return ans;
}
Compilation message (stderr)
books.cpp:5: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
5 | #pragma GCC optimization ("O3")
|
books.cpp:6: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
6 | #pragma GCC optimization ("unroll-loops")
|
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |