Submission #496523

# Submission time Handle Problem Language Result Execution time Memory
496523 2021-12-21T12:27:07 Z PedroBigMan Ancient Books (IOI17_books) C++14
70 / 100
1501 ms 1048576 KB
/*
Author of all code: Pedro BIGMAN Dias
Last edit: 15/02/2021
*/
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
#pragma GCC optimize("Ofast")
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <string>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <queue>
#include <deque>
#include <list>
#include <iomanip>
#include <stdlib.h>
#include <time.h>
#include <cstring>
#include "books.h"
using namespace std;
typedef long long int ll;
typedef unsigned long long int ull;
typedef long double ld;
#define REP(i,a,b) for(ll i=(ll) a; i<(ll) b; i++)
#define pb push_back
#define mp make_pair
#define pl pair<ll,ll>
#define ff first
#define ss second
#define whole(x) x.begin(),x.end()
#define DEBUG(i) cout<<"Pedro Is The Master "<<i<<endl
#define INF 500000000LL
#define EPS 0.00000001
#define pi 3.14159
#define VV(vvvv,NNNN,xxxx); REP(i,0,NNNN) {vvvv.pb(xxxx);}
ll mod=1000000007LL;

template<class A=ll> 
void Out(vector<A> a) {REP(i,0,a.size()) {cout<<a[i]<<" ";} cout<<endl;}

template<class A=ll>
void In(vector<A> &a, ll N) {A cur; REP(i,0,N) {cin>>cur; a.pb(cur);}} 


class ST
{
    public:
    ll N;
    
    class SV //seg value
    {
        public:
        ll a; 
        SV() {a=0LL;}
        SV(ll x) {a=x;}
        
        SV operator & (SV X) {SV ANS(a+X.a); return ANS;}
    };
      
    class LV //lazy value
    {
        public:
        ll a;
        LV() {a=0LL;}
        LV(ll x) {a=x;}
        
        LV operator & (LV X) {LV ANS(a+X.a); return ANS;}
    };
    
    SV upval(ll c) //how lazy values modify a seg value inside a node, c=current node
    {
        SV X(p[c].a+(range[c].ss-range[c].ff+1)*lazy[c].a);
        return X;
    }
    
    SV neuts; LV neutl;
    
    vector<SV> p;
    vector<LV> lazy;
    vector<pl> range;
    
    ST() {N=0LL;}
    ST(vector<ll> arr)
    {
        N = (ll) 1<<(ll) ceil(log2(arr.size()));
        REP(i,0,2*N) {range.pb(mp(0LL,0LL));}
        REP(i,0,N) {p.pb(neuts);}
        REP(i,0,arr.size()) {SV X(arr[i]); p.pb(X); range[i+N]=mp(i,i);}
        REP(i,arr.size(),N) {p.pb(neuts); range[i+N]=mp(i,i);}
        ll cur = N-1;
        while(cur>0)
        {
            p[cur]=p[2*cur]&p[2*cur+1];
            range[cur]=mp(range[2*cur].ff,range[2*cur+1].ss);
            cur--;
        }
        REP(i,0,2*N) {lazy.pb(neutl);}
    }
    
    void prop(ll c) //how lazy values propagate
    {
        lazy[2*c]=lazy[c]&lazy[2*c]; lazy[2*c+1]=lazy[c]&lazy[2*c+1];
        lazy[c]=neutl;
    }
    
    SV query(ll a,ll b, ll c=1LL) //range [a,b], current node. initially: query(a,b)
    {
        ll x=range[c].ff; ll y=range[c].ss;
        if(y<a || x>b) {return neuts;}
        if(x>=a && y<=b) {return upval(c);}
        prop(c);
		p[c]=upval(2*c)&upval(2*c+1);
        SV ans = query(a,b,2*c)&query(a,b,2*c+1);
        return ans;
    }
    
    void update(LV s, ll a, ll b, ll c=1LL) //update LV, range [a,b], current node, current range. initially: update(s,a,b)
    {
        ll x=range[c].ff; ll y=range[c].ss;
        if(y<a || x>b) {return ;}
        if(x>=a && y<=b) 
        {
            lazy[c]=s&lazy[c]; 
            return;
        }
		prop(c);
        update(s,a,b,2*c); update(s,a,b,2*c+1);
        p[c]=upval(2*c)&upval(2*c+1);
    }
};

vector<vector<ll> > CycleDecomp(vector<int> p) //cycle decomposition of permutation
{
	ll N = p.size(); vector<vector<ll> > ans; vector<ll> cur;
	vector<bool> visited; REP(i,0,N) {visited.pb(false);} 
	ll node;
	REP(i,0,N)
	{
		if(visited[i]) {continue;}
		node=i; cur.pb(node); node=p[node];
		while(node!=i)
		{
			cur.pb(node); node=p[node];
		}
		REP(i,0,cur.size()) {visited[cur[i]]=true;}
		ans.pb(cur);
		cur.clear();
	}
	return ans;
}

class WDiGraph
{
    public:
    ll N;
    vector<vector<pl> > adj; 
    vector<bool> visited;
    vector<bool> pr;
	
    WDiGraph(vector<vector<pl> > ad)
    {
        adj=ad; N=adj.size(); REP(i,0,N) {visited.pb(false); pr.pb(false);}
    }
    
    vector<ll> Djikstra(ll s)
    {
        vector<ll> d; REP(i,0,N) {d.pb(INF);}
        d[s]=0;
        priority_queue<pl> q;
        q.push(mp(0,s));
        ll cur;
        while(!q.empty())
        {
            cur=q.top().ss; q.pop();
            if(pr[cur]) {continue;}
            pr[cur]=true; 
            REP(i,0,adj[cur].size())
            {
                if(d[adj[cur][i].ff]>d[cur]+adj[cur][i].ss)
                {
                    d[adj[cur][i].ff]=d[cur]+adj[cur][i].ss;
                    q.push(mp(-d[adj[cur][i].ff],adj[cur][i].ff));
                }
            }
        }
        return d;
    }
};

ll minimum_walk(vector<int> p, int s) 
{
	ll N = p.size();
	vector<vector<ll> > C = CycleDecomp(p);
	vector<pl> range;
	REP(i,0,C.size()) {range.pb({*min_element(whole(C[i])),*max_element(whole(C[i]))});}
	vector<ll> xx; VV(xx,N-1,0); ST S(xx);
	REP(i,0,range.size()) {if(range[i].ff==range[i].ss) {continue;} S.update(1,range[i].ff,range[i].ss-1);}
	vector<bool> in; VV(in,N-1,false);
	REP(i,0,N-1) {if(S.query(i,i).a>0) {in[i]=true;}}
	ll l=0,r=N-2; 
	while(l<s && !in[l]) {l++;}
	while(r>=s && !in[r]) {r--;}
	ll ans=0LL;
	REP(i,l,r+1) {if(!in[i]) {ans+=2LL;}}
	REP(i,0,N) {ans+=((ll) (abs(p[i]-i)));}
	if(s==0) {return ans;}
	ll T=s; while(T<N-1 && in[T]) {T++;} 
	ll SS;
	bool ok=false;
	REP(i,0,C.size()) {REP(j,0,C[i].size()) {if(C[i][j]==T) {T=i;ok=true;break;}} if(ok) {break;}}
	ok=false;
	REP(i,0,C.size()) {REP(j,0,C[i].size()) {if(C[i][j]==s) {SS=i;ok=true;break;}} if(ok) {break;}}
	REP(i,0,C.size()) {sort(whole(C[i]));}
	vector<vector<pl> > adj; VV(adj,C.size(),{});
	vector<ll>::iterator it;
	REP(i,0,C.size())
	{
		REP(j,0,C.size())
		{
			if(i==j) {continue;}
			it = lower_bound(whole(C[j]),range[i].ff);
			if(it!=C[j].end() && (*it)<=range[i].ss) {adj[i].pb({j,0LL}); continue;}
			ll dist=INF;
			if(it!=C[j].begin()) {it--; dist=min(dist,range[i].ff-*it);}
			it=upper_bound(whole(C[j]),range[i].ss);
			if(it!=C[j].end()) {dist=min(dist,*it - range[i].ss);}
			adj[i].pb({j,dist});
		}
	}
	WDiGraph G(adj); vector<ll> d = G.Djikstra(SS); ans+=2LL*d[T];
	return ans;
}

Compilation message

books.cpp:5: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    5 | #pragma GCC optimization ("O3")
      | 
books.cpp:6: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    6 | #pragma GCC optimization ("unroll-loops")
      | 
books.cpp: In function 'll minimum_walk(std::vector<int>, int)':
books.cpp:235:47: warning: 'SS' may be used uninitialized in this function [-Wmaybe-uninitialized]
  235 |  WDiGraph G(adj); vector<ll> d = G.Djikstra(SS); ans+=2LL*d[T];
      |                                               ^
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 1 ms 288 KB Output is correct
3 Correct 0 ms 292 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 1 ms 292 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 1 ms 204 KB Output is correct
11 Correct 0 ms 292 KB Output is correct
12 Correct 1 ms 276 KB Output is correct
13 Correct 1 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 216 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 1 ms 288 KB Output is correct
3 Correct 0 ms 292 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 1 ms 292 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 1 ms 204 KB Output is correct
11 Correct 0 ms 292 KB Output is correct
12 Correct 1 ms 276 KB Output is correct
13 Correct 1 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 216 KB Output is correct
19 Correct 1 ms 336 KB Output is correct
20 Correct 1 ms 332 KB Output is correct
21 Correct 1 ms 460 KB Output is correct
22 Correct 1 ms 468 KB Output is correct
23 Correct 1 ms 340 KB Output is correct
24 Correct 1 ms 332 KB Output is correct
25 Correct 1 ms 420 KB Output is correct
26 Correct 1 ms 424 KB Output is correct
27 Correct 1 ms 332 KB Output is correct
28 Correct 1 ms 332 KB Output is correct
29 Correct 1 ms 332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 1 ms 288 KB Output is correct
3 Correct 0 ms 292 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 1 ms 292 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 1 ms 204 KB Output is correct
11 Correct 0 ms 292 KB Output is correct
12 Correct 1 ms 276 KB Output is correct
13 Correct 1 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 216 KB Output is correct
19 Correct 1 ms 336 KB Output is correct
20 Correct 1 ms 332 KB Output is correct
21 Correct 1 ms 460 KB Output is correct
22 Correct 1 ms 468 KB Output is correct
23 Correct 1 ms 340 KB Output is correct
24 Correct 1 ms 332 KB Output is correct
25 Correct 1 ms 420 KB Output is correct
26 Correct 1 ms 424 KB Output is correct
27 Correct 1 ms 332 KB Output is correct
28 Correct 1 ms 332 KB Output is correct
29 Correct 1 ms 332 KB Output is correct
30 Correct 456 ms 114492 KB Output is correct
31 Correct 466 ms 114356 KB Output is correct
32 Correct 499 ms 177516 KB Output is correct
33 Correct 590 ms 157456 KB Output is correct
34 Correct 527 ms 157436 KB Output is correct
35 Correct 506 ms 148124 KB Output is correct
36 Correct 491 ms 129772 KB Output is correct
37 Correct 415 ms 117240 KB Output is correct
38 Correct 434 ms 115764 KB Output is correct
39 Correct 411 ms 115724 KB Output is correct
40 Correct 411 ms 115484 KB Output is correct
41 Correct 437 ms 115436 KB Output is correct
42 Correct 440 ms 115556 KB Output is correct
43 Correct 556 ms 160388 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 23 ms 27724 KB Output is correct
2 Correct 15 ms 19052 KB Output is correct
3 Correct 14 ms 15660 KB Output is correct
4 Correct 26 ms 26312 KB Output is correct
5 Correct 23 ms 25048 KB Output is correct
6 Correct 20 ms 25756 KB Output is correct
7 Correct 20 ms 27052 KB Output is correct
8 Correct 21 ms 21528 KB Output is correct
9 Correct 21 ms 21580 KB Output is correct
10 Correct 42 ms 47840 KB Output is correct
11 Correct 17 ms 12236 KB Output is correct
12 Correct 14 ms 12360 KB Output is correct
13 Correct 10 ms 8268 KB Output is correct
14 Correct 6 ms 5836 KB Output is correct
15 Correct 2 ms 1612 KB Output is correct
16 Correct 1 ms 588 KB Output is correct
17 Correct 31 ms 36428 KB Output is correct
18 Correct 25 ms 26868 KB Output is correct
19 Correct 10 ms 10572 KB Output is correct
20 Correct 1 ms 716 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 1 ms 288 KB Output is correct
3 Correct 0 ms 292 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 1 ms 292 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 1 ms 204 KB Output is correct
11 Correct 0 ms 292 KB Output is correct
12 Correct 1 ms 276 KB Output is correct
13 Correct 1 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 216 KB Output is correct
19 Correct 1 ms 336 KB Output is correct
20 Correct 1 ms 332 KB Output is correct
21 Correct 1 ms 460 KB Output is correct
22 Correct 1 ms 468 KB Output is correct
23 Correct 1 ms 340 KB Output is correct
24 Correct 1 ms 332 KB Output is correct
25 Correct 1 ms 420 KB Output is correct
26 Correct 1 ms 424 KB Output is correct
27 Correct 1 ms 332 KB Output is correct
28 Correct 1 ms 332 KB Output is correct
29 Correct 1 ms 332 KB Output is correct
30 Correct 456 ms 114492 KB Output is correct
31 Correct 466 ms 114356 KB Output is correct
32 Correct 499 ms 177516 KB Output is correct
33 Correct 590 ms 157456 KB Output is correct
34 Correct 527 ms 157436 KB Output is correct
35 Correct 506 ms 148124 KB Output is correct
36 Correct 491 ms 129772 KB Output is correct
37 Correct 415 ms 117240 KB Output is correct
38 Correct 434 ms 115764 KB Output is correct
39 Correct 411 ms 115724 KB Output is correct
40 Correct 411 ms 115484 KB Output is correct
41 Correct 437 ms 115436 KB Output is correct
42 Correct 440 ms 115556 KB Output is correct
43 Correct 556 ms 160388 KB Output is correct
44 Correct 23 ms 27724 KB Output is correct
45 Correct 15 ms 19052 KB Output is correct
46 Correct 14 ms 15660 KB Output is correct
47 Correct 26 ms 26312 KB Output is correct
48 Correct 23 ms 25048 KB Output is correct
49 Correct 20 ms 25756 KB Output is correct
50 Correct 20 ms 27052 KB Output is correct
51 Correct 21 ms 21528 KB Output is correct
52 Correct 21 ms 21580 KB Output is correct
53 Correct 42 ms 47840 KB Output is correct
54 Correct 17 ms 12236 KB Output is correct
55 Correct 14 ms 12360 KB Output is correct
56 Correct 10 ms 8268 KB Output is correct
57 Correct 6 ms 5836 KB Output is correct
58 Correct 2 ms 1612 KB Output is correct
59 Correct 1 ms 588 KB Output is correct
60 Correct 31 ms 36428 KB Output is correct
61 Correct 25 ms 26868 KB Output is correct
62 Correct 10 ms 10572 KB Output is correct
63 Correct 1 ms 716 KB Output is correct
64 Runtime error 1501 ms 1048576 KB Execution killed with signal 9
65 Halted 0 ms 0 KB -