제출 #484719

#제출 시각아이디문제언어결과실행 시간메모리
484719jalsol말 (IOI15_horses)C++17
17 / 100
1592 ms14352 KiB
#include "horses.h" #ifdef LOCAL #include "local.h" #else #include <bits/stdc++.h> #define debug(...) #define DB(...) #endif using namespace std; const bool __initialization = []() { cin.tie(nullptr)->sync_with_stdio(false); cout << setprecision(12) << fixed; return true; }(); using ll = long long; using ld = long double; #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define For(i, l, r) for (int i = (l); i <= (r); ++i) #define Ford(i, r, l) for (int i = (r); i >= (l); --i) #define Rep(i, n) For (i, 0, (n) - 1) #define Repd(i, n) Ford (i, (n) - 1, 0) #define Fe(...) for (auto __VA_ARGS__) template <class C> inline int isz(const C& c) { return static_cast<int>(c.size()); } template <class T> inline bool chmin(T& a, const T& b) { return (a > b) ? a = b, true : false; } template <class T> inline bool chmax(T& a, const T& b) { return (a < b) ? a = b, true : false; } constexpr ld eps = 1e-9; constexpr int inf = 1e9; constexpr ll linf = 1e18; // ============================================================================= template <typename T> T mod_inv_in_range(T a, T m) { // assert(0 <= a && a < m); T x = a, y = m; T vx = 1, vy = 0; while (x) { T k = y / x; y %= x; vy -= k * vx; std::swap(x, y); std::swap(vx, vy); } assert(y == 1); return vy < 0 ? m + vy : vy; } template <typename T> T mod_inv(T a, T m) { a %= m; a = a < 0 ? a + m : a; return mod_inv_in_range(a, m); } template <int MOD_> struct modnum { static constexpr int MOD = MOD_; static_assert(MOD_ > 0, "MOD must be positive"); private: using ll = long long; int v; public: modnum() : v(0) {} modnum(ll v_) : v(int(v_ % MOD)) { if (v < 0) v += MOD; } explicit operator int() const { return v; } friend std::ostream& operator << (std::ostream& out, const modnum& n) { return out << int(n); } friend std::istream& operator >> (std::istream& in, modnum& n) { ll v_; in >> v_; n = modnum(v_); return in; } friend bool operator == (const modnum& a, const modnum& b) { return a.v == b.v; } friend bool operator != (const modnum& a, const modnum& b) { return a.v != b.v; } modnum inv() const { modnum res; res.v = mod_inv_in_range(v, MOD); return res; } friend modnum inv(const modnum& m) { return m.inv(); } modnum neg() const { modnum res; res.v = v ? MOD-v : 0; return res; } friend modnum neg(const modnum& m) { return m.neg(); } modnum operator- () const { return neg(); } modnum operator+ () const { return modnum(*this); } modnum& operator ++ () { v ++; if (v == MOD) v = 0; return *this; } modnum& operator -- () { if (v == 0) v = MOD; v --; return *this; } modnum& operator += (const modnum& o) { v -= MOD-o.v; v = (v < 0) ? v + MOD : v; return *this; } modnum& operator -= (const modnum& o) { v -= o.v; v = (v < 0) ? v + MOD : v; return *this; } modnum& operator *= (const modnum& o) { v = int(ll(v) * ll(o.v) % MOD); return *this; } modnum& operator /= (const modnum& o) { return *this *= o.inv(); } friend modnum operator ++ (modnum& a, int) { modnum r = a; ++a; return r; } friend modnum operator -- (modnum& a, int) { modnum r = a; --a; return r; } friend modnum operator + (const modnum& a, const modnum& b) { return modnum(a) += b; } friend modnum operator - (const modnum& a, const modnum& b) { return modnum(a) -= b; } friend modnum operator * (const modnum& a, const modnum& b) { return modnum(a) *= b; } friend modnum operator / (const modnum& a, const modnum& b) { return modnum(a) /= b; } }; template <typename T> T pow(T a, long long b) { assert(b >= 0); T r = 1; while (b) { if (b & 1) r *= a; b >>= 1; a *= a; } return r; } using mint = modnum<inf + 7>; constexpr int maxn = 5e5 + 5; int n; ll pw[maxn]; ll price[maxn]; int getAns() { ll ans = 1; ll exp = 1; For (i, 1, n) { exp *= pw[i]; chmax(ans, exp * price[i]); } return int(mint(ans)); } int init(int _N, int _X[], int _Y[]) { n = _N; For (i, 1, n) { pw[i] = _X[i - 1]; price[i] = _Y[i - 1]; } return getAns(); } int updateX(int pos, int val) { pw[pos + 1] = val; return getAns(); } int updateY(int pos, int val) { price[pos + 1] = val; return getAns(); } // selling everything at one single day I suppose? // if there's an answer of selling at both days, // then keeping instead of selling at the first day, // keeping the number of horses grow then sell at the second day // will profit more because of the property of exponential functions // ig? // but the values will get very, very large, very quickly... // if it passes the first subtask, then the logic could be correct
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...