This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include "horses.h"
#ifdef LOCAL
#include "local.h"
#else
#include <bits/stdc++.h>
#define debug(...)
#define DB(...)
#endif
using namespace std;
const bool __initialization = []() {
cin.tie(nullptr)->sync_with_stdio(false);
cout << setprecision(12) << fixed;
return true;
}();
using ll = long long;
using ld = long double;
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define For(i, l, r) for (int i = (l); i <= (r); ++i)
#define Ford(i, r, l) for (int i = (r); i >= (l); --i)
#define Rep(i, n) For (i, 0, (n) - 1)
#define Repd(i, n) Ford (i, (n) - 1, 0)
#define Fe(...) for (auto __VA_ARGS__)
template <class C> inline int isz(const C& c) { return static_cast<int>(c.size()); }
template <class T> inline bool chmin(T& a, const T& b) { return (a > b) ? a = b, true : false; }
template <class T> inline bool chmax(T& a, const T& b) { return (a < b) ? a = b, true : false; }
constexpr ld eps = 1e-9;
constexpr int inf = 1e9;
constexpr ll linf = 1e18;
// =============================================================================
template <typename T> T mod_inv_in_range(T a, T m) {
// assert(0 <= a && a < m);
T x = a, y = m;
T vx = 1, vy = 0;
while (x) {
T k = y / x;
y %= x;
vy -= k * vx;
std::swap(x, y);
std::swap(vx, vy);
}
assert(y == 1);
return vy < 0 ? m + vy : vy;
}
template <typename T> T mod_inv(T a, T m) {
a %= m;
a = a < 0 ? a + m : a;
return mod_inv_in_range(a, m);
}
template <int MOD_> struct modnum {
static constexpr int MOD = MOD_;
static_assert(MOD_ > 0, "MOD must be positive");
private:
using ll = long long;
int v;
public:
modnum() : v(0) {}
modnum(ll v_) : v(int(v_ % MOD)) { if (v < 0) v += MOD; }
explicit operator int() const { return v; }
friend std::ostream& operator << (std::ostream& out, const modnum& n) { return out << int(n); }
friend std::istream& operator >> (std::istream& in, modnum& n) { ll v_; in >> v_; n = modnum(v_); return in; }
friend bool operator == (const modnum& a, const modnum& b) { return a.v == b.v; }
friend bool operator != (const modnum& a, const modnum& b) { return a.v != b.v; }
modnum inv() const {
modnum res;
res.v = mod_inv_in_range(v, MOD);
return res;
}
friend modnum inv(const modnum& m) { return m.inv(); }
modnum neg() const {
modnum res;
res.v = v ? MOD-v : 0;
return res;
}
friend modnum neg(const modnum& m) { return m.neg(); }
modnum operator- () const {
return neg();
}
modnum operator+ () const {
return modnum(*this);
}
modnum& operator ++ () {
v ++;
if (v == MOD) v = 0;
return *this;
}
modnum& operator -- () {
if (v == 0) v = MOD;
v --;
return *this;
}
modnum& operator += (const modnum& o) {
v -= MOD-o.v;
v = (v < 0) ? v + MOD : v;
return *this;
}
modnum& operator -= (const modnum& o) {
v -= o.v;
v = (v < 0) ? v + MOD : v;
return *this;
}
modnum& operator *= (const modnum& o) {
v = int(ll(v) * ll(o.v) % MOD);
return *this;
}
modnum& operator /= (const modnum& o) {
return *this *= o.inv();
}
friend modnum operator ++ (modnum& a, int) { modnum r = a; ++a; return r; }
friend modnum operator -- (modnum& a, int) { modnum r = a; --a; return r; }
friend modnum operator + (const modnum& a, const modnum& b) { return modnum(a) += b; }
friend modnum operator - (const modnum& a, const modnum& b) { return modnum(a) -= b; }
friend modnum operator * (const modnum& a, const modnum& b) { return modnum(a) *= b; }
friend modnum operator / (const modnum& a, const modnum& b) { return modnum(a) /= b; }
};
template <typename T> T pow(T a, long long b) {
assert(b >= 0);
T r = 1; while (b) { if (b & 1) r *= a; b >>= 1; a *= a; } return r;
}
using mint = modnum<inf + 7>;
constexpr int maxn = 5e5 + 5;
int n;
ll pw[maxn];
ll price[maxn];
int getAns() {
ll ans = 1;
ll exp = 1;
For (i, 1, n) {
exp *= pw[i];
chmax(ans, exp * price[i]);
}
return int(mint(ans));
}
int init(int _N, int _X[], int _Y[]) {
n = _N;
For (i, 1, n) {
pw[i] = _X[i - 1];
price[i] = _Y[i - 1];
}
return getAns();
}
int updateX(int pos, int val) {
pw[pos + 1] = val;
return getAns();
}
int updateY(int pos, int val) {
price[pos + 1] = val;
return getAns();
}
// selling everything at one single day I suppose?
// if there's an answer of selling at both days,
// then keeping instead of selling at the first day,
// keeping the number of horses grow then sell at the second day
// will profit more because of the property of exponential functions
// ig?
// but the values will get very, very large, very quickly...
// if it passes the first subtask, then the logic could be correct
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |