답안 #480355

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
480355 2021-10-15T18:07:14 Z blue 이상적인 도시 (IOI12_city) C++17
100 / 100
153 ms 49264 KB
#include <iostream>
#include <vector>
#include <algorithm>
#include <set>
#include <queue>
#include <map>
using namespace std;
int N;
vector<int> X, Y;
const int MX = 100'000;
const int INF = 1'000'000'000;
struct point{
    int x;
    int y;
    int i;
    int rightNodes;
    int downNodes;
};
bool operator < (point A, point B){
    if(A.x != B.x) return A.x < B.x;
    return A.y < B.y;
}
set<point> P;
int getIndex(int x, int y){
    set<point>::iterator f = P.find(point{x, y, -1, -1, -1});
    if(f == P.end()) return -1;
    else return f->i;
}
long long new_ans = 0;
vector<int> up_edge[1+MX];
vector<int> down_edge[1+MX];
vector<int> Y_index_size(1+MX);
vector<int> Y_index_coord(1+MX);
int Y_max_index;
vector<int> Y_parent(1+MX);
vector<int> Y_subtree_sum(1+MX);
vector<int> point_Y_line(1+MX);
void Y_dfs(int u, int p){
    Y_subtree_sum[u] = Y_index_size[u];
    for(int v: up_edge[u]){
        if(v == p) continue;
        Y_parent[v] =  u;
        Y_dfs(v, u);
        Y_subtree_sum[u] += Y_subtree_sum[v];
    }
    for(int v: down_edge[u]){
        if(v == p) continue;
        Y_parent[v] =  u;
        Y_dfs(v, u);
        Y_subtree_sum[u] += Y_subtree_sum[v];
    }
}
vector<int> left_edge[1+MX];
vector<int> right_edge[1+MX];
vector<int> X_index_size(1+MX);
vector<int> X_index_coord(1+MX);
int X_max_index;
vector<int> X_parent(1+MX);
vector<int> X_subtree_sum(1+MX);
vector<int> point_X_line(1+MX);
void X_dfs(int u, int p){
    X_subtree_sum[u] = X_index_size[u];
    for(int v: left_edge[u]){
        if(v == p) continue;
        X_parent[v] =  u;
        X_dfs(v, u);
        X_subtree_sum[u] += X_subtree_sum[v];
    }
    for(int v: right_edge[u]){
        if(v == p) continue;
        X_parent[v] =  u;
        X_dfs(v, u);
        X_subtree_sum[u] += X_subtree_sum[v];
    }
}
long long init_dist = 0;
vector<int> dx{0, 0, +1, -1};
vector<int> dy{+1, -1, 0, 0};
vector<bool> visit(MX, 0);
int DistanceSum(int N_, int *X_, int *Y_){
    N = N_;
    X = vector<int>(N);
    Y = vector<int>(N);
    for(int i = 0; i < N; i++){
        X[i] = X_[i];
        Y[i] = Y_[i];
    }
    int Xmin = X[0], Ymin = Y[0];
    for(int i = 1; i < N; i++){
        Xmin = min(Xmin, X[i]);
        Ymin = min(Ymin, Y[i]);
    }
    for(int i = 0; i < N; i++){
        X[i] = X[i] - Xmin + 1;
        Y[i] = Y[i] - Ymin + 1; 
    }
    for(int i = 0; i < N; i++)
        P.insert(point{X[i], Y[i], i, -1, -1});
    vector<int> Ylist[1+MX];
    for(int i = 0; i < N; i++)
        Ylist[ X[i] ].push_back(Y[i]);
    for(int x = 1; x <= MX; x++)
        sort(Ylist[x].begin(), Ylist[x].end());
    int curr_Y_index = 0;
    vector<int> Y_begin[1+MX], Y_end[1+MX];
    vector<int>* Y_index = new vector<int>[1+MX];
    for(int x = 1; x <= MX; x++){
        if(Ylist[x].empty()) continue;
        Y_begin[x].push_back(Ylist[x][0]);
        curr_Y_index++;
        Y_index[x].push_back(curr_Y_index);
        for(int i = 1; i < (int)Ylist[x].size(); i++){
            if(Ylist[x][i-1] + 1 != Ylist[x][i]){
                Y_end[x].push_back(Ylist[x][i-1]);
                Y_begin[x].push_back(Ylist[x][i]);
                curr_Y_index++;
                Y_index[x].push_back(curr_Y_index);
            }
        }
        Y_end[x].push_back(Ylist[x].back());
        for(int v = 0; v < (int)Y_begin[x].size(); v++){
            Y_index_size[ Y_index[x][v] ] = Y_end[x][v] - Y_begin[x][v] + 1;
            Y_index_coord[ Y_index[x][v] ] = x;
            for(int y = Y_begin[x][v]; y <= Y_end[x][v]; y++)
                point_Y_line[ getIndex(x, y) ] = Y_index[x][v];
        }
    }
    for(int x = 1; x+1 <= MX; x++){
        if(Y_index[x].empty() || Y_index[x+1].empty()) continue;
        int q = 0;
        for(int p = 0; p < (int)Y_index[x].size(); p++){
            if(max(Y_begin[x][p], Y_begin[x+1][q]) <= min(Y_end[x][p], Y_end[x+1][q])){
                down_edge[Y_index[x][p]].push_back(Y_index[x+1][q]);
                up_edge[Y_index[x+1][q]].push_back(Y_index[x][p]);
            }
            while(q+1 < (int)Y_begin[x+1].size() && Y_begin[x+1][q+1] <= Y_end[x][p]){
                q++;
                if(max(Y_begin[x][p], Y_begin[x+1][q]) <= min(Y_end[x][p], Y_end[x+1][q])){
                    down_edge[Y_index[x][p]].push_back(Y_index[x+1][q]);
                    up_edge[Y_index[x+1][q]].push_back(Y_index[x][p]);
                }
            }
        }
    }
    Y_max_index = curr_Y_index;
    Y_parent[1] = 0;
    Y_dfs(1, 1);
    for(int u = 1; u <= Y_max_index; u++){
        for(int v: down_edge[u]){
            if(v == Y_parent[u])
                new_ans += (long long)Y_subtree_sum[u] * (long long)(N - Y_subtree_sum[u]);
            else
                new_ans += (long long)Y_subtree_sum[v] * (long long)(N - Y_subtree_sum[v]);
        }
    }
    vector<int>* Xlist = new vector<int>[1+MX];
    for(int i = 0; i < N; i++)
        Xlist[ Y[i] ].push_back(X[i]);
    for(int y = 1; y <= MX; y++)
        sort(Xlist[y].begin(), Xlist[y].end());
    int curr_X_index = 0;
    vector<int>* X_begin = new vector<int>[1+MX];
    vector<int>* X_end = new vector<int>[1+MX];
    vector<int>* X_index = new vector<int>[1+MX];
    for(int y = 1; y <= MX; y++){
        if(Xlist[y].empty()) continue;
        X_begin[y].push_back(Xlist[y][0]);
        curr_X_index++;
        X_index[y].push_back(curr_X_index);
        for(int i = 1; i < (int)Xlist[y].size(); i++){
            if(Xlist[y][i-1] + 1 != Xlist[y][i]){
                X_end[y].push_back(Xlist[y][i-1]);
                X_begin[y].push_back(Xlist[y][i]);
                curr_X_index++;
                X_index[y].push_back(curr_X_index);
            }
        }
        X_end[y].push_back(Xlist[y].back());
        for(int v = 0; v < (int)X_begin[y].size(); v++){
            X_index_size[ X_index[y][v] ] = X_end[y][v] - X_begin[y][v] + 1;
            X_index_coord[ X_index[y][v] ] = y;
            for(int x = X_begin[y][v]; x <= X_end[y][v]; x++)
                point_X_line[ getIndex(x, y) ] = X_index[y][v];
        }
    }
    for(int y = 1; y+1 <= MX; y++){
        if(X_index[y].empty() || X_index[y+1].empty()) continue;
        int q = 0;
        for(int p = 0; p < (int)X_index[y].size(); p++){
            if(max(X_begin[y][p], X_begin[y+1][q]) <= min(X_end[y][p], X_end[y+1][q])){
                right_edge[X_index[y][p]].push_back(X_index[y+1][q]);
                left_edge[X_index[y+1][q]].push_back(X_index[y][p]);
            }
            while(q+1 < (int)X_begin[y+1].size() && X_begin[y+1][q+1] <= X_end[y][p]){
                q++;
                if(max(X_begin[y][p], X_begin[y+1][q]) <= min(X_end[y][p], X_end[y+1][q])){
                    right_edge[X_index[y][p]].push_back(X_index[y+1][q]);
                    left_edge[X_index[y+1][q]].push_back(X_index[y][p]);
                }
            }
        }
    }
    X_max_index = curr_X_index;
    X_parent[1] = 0;
    X_dfs(1, 1);
    for(int u = 1; u <= X_max_index; u++)
    {
        for(int v: right_edge[u])
        {
            if(v == X_parent[u])
                new_ans += (long long)X_subtree_sum[u] * (long long)(N - X_subtree_sum[u]);
            else
                new_ans += (long long)X_subtree_sum[v] * (long long)(N - X_subtree_sum[v]);
        }
    }
    return int(new_ans % 1'000'000'000LL);
}
# 결과 실행 시간 메모리 Grader output
1 Correct 20 ms 32332 KB Output is correct
2 Correct 24 ms 32356 KB Output is correct
3 Correct 20 ms 32332 KB Output is correct
4 Correct 20 ms 32408 KB Output is correct
5 Correct 21 ms 32332 KB Output is correct
6 Correct 20 ms 32460 KB Output is correct
7 Correct 22 ms 32440 KB Output is correct
8 Correct 22 ms 32460 KB Output is correct
9 Correct 22 ms 32332 KB Output is correct
10 Correct 21 ms 32336 KB Output is correct
11 Correct 23 ms 32332 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 21 ms 32508 KB Output is correct
2 Correct 23 ms 32460 KB Output is correct
3 Correct 25 ms 32588 KB Output is correct
4 Correct 20 ms 32564 KB Output is correct
5 Correct 22 ms 32716 KB Output is correct
6 Correct 23 ms 32692 KB Output is correct
7 Correct 22 ms 32716 KB Output is correct
8 Correct 23 ms 32640 KB Output is correct
9 Correct 22 ms 32616 KB Output is correct
10 Correct 21 ms 32548 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 38 ms 34352 KB Output is correct
2 Correct 37 ms 34464 KB Output is correct
3 Correct 65 ms 37056 KB Output is correct
4 Correct 65 ms 37228 KB Output is correct
5 Correct 124 ms 41728 KB Output is correct
6 Correct 128 ms 41948 KB Output is correct
7 Correct 126 ms 42180 KB Output is correct
8 Correct 125 ms 41660 KB Output is correct
9 Correct 138 ms 42052 KB Output is correct
10 Correct 146 ms 49264 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 45 ms 35404 KB Output is correct
2 Correct 42 ms 35004 KB Output is correct
3 Correct 79 ms 39844 KB Output is correct
4 Correct 69 ms 38896 KB Output is correct
5 Correct 153 ms 47204 KB Output is correct
6 Correct 137 ms 43872 KB Output is correct
7 Correct 150 ms 47444 KB Output is correct
8 Correct 137 ms 44056 KB Output is correct
9 Correct 133 ms 43392 KB Output is correct
10 Correct 131 ms 43096 KB Output is correct