Submission #443532

#TimeUsernameProblemLanguageResultExecution timeMemory
443532JvThunderDungeons Game (IOI21_dungeons)C++17
100 / 100
2518 ms915516 KiB
#include "dungeons.h" #include <bits/stdc++.h> #define fir first #define sec second typedef long long ll; using namespace std; //constants int base = 5; // base here means doing in 2^base // use a higher base instead of 2 for the phase ranges to make the memory efficient // note: using a smaller base decreases runtime but increases memory const int nop = 5; // no of phase const int noa = 19; // no of ancestor for binlift const int sz = 400005; // max size of N int INF = 1e9+7; ll add[sz] = {0}; // add[i] = str increase if start at i & win all pair<int,pair<int,ll>> jump[nop][noa][sz]; // store: jump dest, min(str_opp - str_gained), str_inc // jump[a][b][i] is game simulation starting from index i & // jump 2^b steps ahead assuming only win against everything <=8^a int N; vector<int> S,P,W,L; void init(int n, vector<int> s, vector<int> p, vector<int> w, vector<int> l) { S = s; P = p; W = w; L = l; N = n; // add dummy node for index n S.push_back(INF); P.push_back(INF); W.push_back(n); L.push_back(n); // assume always wins for(int i=n-1; i>=0; i--) add[i] = add[W[i]] + S[i]; for(int ph=0; ph<nop; ph++) // ph: phase { // current phase range ll l = 1<<(base*ph); ll r = 1<<(base*(ph+1)); for(int i=0; i<=n; i++) { // if in range, assume lose but store its min(str_opp - str_gained) if ((l<S[i] && S[i]<r) || i==n) jump[ph][0][i] = {L[i], {S[i], P[i]}}; // if below range, assume win else if (S[i]<=l) jump[ph][0][i] = {W[i], {INF, S[i]}}; // if above range, assume lose else jump[ph][0][i] = {L[i], {INF, P[i]}}; } // binlift for(int b=1; b<noa; b++) // no of jump = 2^b { for (int i=0; i<=n; i++) { int pos = i; ll min_S = INF, str_add = 0; for (int it=0; it<2; it++) // 2 jumps of 2^(i-1) -> 1 jump of 2^i { auto pr = jump[ph][b-1][pos]; min_S = min(min_S, pr.sec.fir-str_add); // min(str_opp - str_gained) of all prefixes up to 2^b jumps str_add += pr.sec.sec; // strength inc from 2^b jumps pos = pr.first; // landing position after 2^b jumps } jump[ph][b][i] = {pos, {min_S, str_add}}; } } } return; } ll simulate(int x, int z) { int pos = x; // current position ll str = z; // current strength for(int a=0; a<nop; a++) { // current phase range ll l = 1<<(base*a); ll r = 1<<(base*(a+1)); while(pos!=N && l<=str && str<r) { for(int b=noa-1; b>=0; b--) // binlift until 1 step before you can beat a person with a higher phase { // condition 1 is true if still in current phase range // condition 2 is true if no win against a current phase range while(str+jump[a][b][pos].sec.sec < r && str-jump[a][b][pos].sec.fir < 0) { str += jump[a][b][pos].sec.sec; pos = jump[a][b][pos].fir; } } if(pos!=N) // simulate 1 move naive { if(str>=S[pos]) str += S[pos], pos = W[pos]; else str += P[pos], pos = L[pos]; } } } str += add[pos]; //assume win all return str; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...