Submission #427813

# Submission time Handle Problem Language Result Execution time Memory
427813 2021-06-14T23:44:14 Z gmyu Restore Array (RMI19_restore) C++14
100 / 100
129 ms 1000 KB
/*
ID: USACO_template
LANG: C++
PROG: https://oj.uz/problem/view/RMI19_restore
*/
#include <iostream>  //cin , cout
#include <fstream>   //fin, fout
#include <stdio.h>   // scanf , pringf
#include <cstdio>
#include <algorithm> // sort , stuff
#include <stack>     // stacks
#include <queue>     // queues
#include <map>
#include <string>
#include <string.h>
#include <set>
#include <assert.h>     /* assert */


using namespace std;

typedef pair<int, int>          pii;
typedef vector<int>             vi;     /// adjlist without weight
typedef vector<pii>             vii;    /// adjlist with weight
typedef vector<pair<int,pii>>   vpip;   /// edge with weight
typedef long long               ll;

#define mp  make_pair
#define ff  first
#define ss  second
#define pb  push_back
#define sz(x)   (int)(x).size()

const int MOD = 1e9+7;  // 998244353;
const int MX  = 2e5+5;   //
const ll  INF = 1e18;    //

#define MAXV 5007
#define MAXE 100007


bool debug;

int N, M;
vii adjlist[MAXV];
int useNode[MAXV];
int dist[MAXV], cnt[MAXV], inq[MAXV];

bool spfa(int s) {  /// Shortest Path Faster Algorithm
    for(int i=0; i<N; i++) {
        dist[i] = MX;
        cnt[i] = 0; inq[i] = 0;
    }
    queue<int> q;

    dist[s] = 0;
    q.push(s); inq[s] = 1;
    while (!q.empty()) {
        int v = q.front();
        q.pop(); inq[v] = 0;

        for(auto e : adjlist[v]) {
            int u = e.ff, w = e.ss;
            if(dist[v] + w < dist[u]) {
                dist[u] = dist[v] + w;
                if(dist[u] < 0 ) return false; /// optimization for TLE.
                if(!inq[u]) {
                    q.push(u); inq[u] = 1;
                    cnt[u]++;
                    if(cnt[u]>N) return false;
                }
            }
        }
    }

    return true;
}

int main() {
    debug = false;
    ios_base::sync_with_stdio(false); cin.tie(0);

    cin >> N >> M;

    /// solve linear inequality function using negative weight SSSP approach
    for(int i=0;i<M; i++) {
        int l, r, k, val; cin >> l >> r >> k >> val;
        /// xi is number of 1 from 0 to i
        l++; r++;
        if(val == 1) {
            /// k-th smallest is 1, i.e. # of 0 < k
            /// (r-l+1) - (x[r] - x[l-1]) < k, i.e. x[l-1] - x[r] <= -(r-l+1) + k -1
            adjlist[r].pb(mp(l-1, -(r-l+1) + k -1));
            if(debug) cout << r << "->" << l-1 << " = " << -(r-l+1) + k -1 << endl;
        } else {
            /// k-th smallest is 0, i.e. # of 0 >= k
            /// (r-l+1) - (x[r] - x[l-1]) >= k, i.e. x[r] - x[l-1] <= (r-l+1)-k
            adjlist[l-1].pb(mp(r, (r-l+1)-k));
            if(debug) cout << l-1 << "->" << r << " = " << k -1 << endl;
        }
    }
    /// restriction: the increase from x[i-1] to x[i] is either 0 or 1
    for(int i=1; i<=N; i++) {
        /// x[i] - x[i-1] <=1
        adjlist[i-1].pb(mp(i, 1));
        /// x[i] - x[i-1] >=0, i.e. x[i-1] - x[i] <=0
        adjlist[i].pb(mp(i-1, 0));
    }
    N++;

    /// SPFA
    if(!spfa(0)) {
        cout << -1 << endl;
        if(debug) {
            cout << endl;
            for(int i=1; i<N; i++) cout << dist[i] << endl;
        }
        exit(0);
    }

    /// output a possible solution which is the distance from source s
    for(int i=1; i<N; i++) {
        if(dist[i] > dist[i-1]) cout << 1;
        else cout << 0;
        cout << " ";
    }
    cout << endl;

    if(debug) cout << endl << "EOL" << endl;

}

/**
4 5
0 1 2 1
0 2 2 0
2 2 1 0
0 1 1 0
1 2 1 0

*/
# Verdict Execution time Memory Grader output
1 Correct 1 ms 332 KB Output is correct
2 Correct 1 ms 332 KB Output is correct
3 Correct 1 ms 332 KB Output is correct
4 Correct 1 ms 332 KB Output is correct
5 Correct 1 ms 332 KB Output is correct
6 Correct 1 ms 332 KB Output is correct
7 Correct 1 ms 332 KB Output is correct
8 Correct 1 ms 332 KB Output is correct
9 Correct 1 ms 332 KB Output is correct
10 Correct 1 ms 332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 13 ms 716 KB Output is correct
2 Correct 15 ms 716 KB Output is correct
3 Correct 15 ms 784 KB Output is correct
4 Correct 13 ms 716 KB Output is correct
5 Correct 5 ms 716 KB Output is correct
6 Correct 5 ms 844 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 13 ms 716 KB Output is correct
2 Correct 15 ms 716 KB Output is correct
3 Correct 15 ms 784 KB Output is correct
4 Correct 13 ms 716 KB Output is correct
5 Correct 5 ms 716 KB Output is correct
6 Correct 5 ms 844 KB Output is correct
7 Correct 18 ms 972 KB Output is correct
8 Correct 18 ms 972 KB Output is correct
9 Correct 21 ms 972 KB Output is correct
10 Correct 12 ms 980 KB Output is correct
11 Correct 9 ms 844 KB Output is correct
12 Correct 9 ms 844 KB Output is correct
13 Correct 14 ms 956 KB Output is correct
14 Correct 34 ms 984 KB Output is correct
15 Correct 35 ms 932 KB Output is correct
16 Correct 129 ms 972 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 332 KB Output is correct
2 Correct 1 ms 332 KB Output is correct
3 Correct 1 ms 332 KB Output is correct
4 Correct 1 ms 332 KB Output is correct
5 Correct 1 ms 332 KB Output is correct
6 Correct 1 ms 332 KB Output is correct
7 Correct 1 ms 332 KB Output is correct
8 Correct 1 ms 332 KB Output is correct
9 Correct 1 ms 332 KB Output is correct
10 Correct 1 ms 332 KB Output is correct
11 Correct 13 ms 716 KB Output is correct
12 Correct 15 ms 716 KB Output is correct
13 Correct 15 ms 784 KB Output is correct
14 Correct 13 ms 716 KB Output is correct
15 Correct 5 ms 716 KB Output is correct
16 Correct 5 ms 844 KB Output is correct
17 Correct 18 ms 972 KB Output is correct
18 Correct 18 ms 972 KB Output is correct
19 Correct 21 ms 972 KB Output is correct
20 Correct 12 ms 980 KB Output is correct
21 Correct 9 ms 844 KB Output is correct
22 Correct 9 ms 844 KB Output is correct
23 Correct 14 ms 956 KB Output is correct
24 Correct 34 ms 984 KB Output is correct
25 Correct 35 ms 932 KB Output is correct
26 Correct 129 ms 972 KB Output is correct
27 Correct 13 ms 988 KB Output is correct
28 Correct 13 ms 884 KB Output is correct
29 Correct 14 ms 964 KB Output is correct
30 Correct 15 ms 1000 KB Output is correct
31 Correct 11 ms 976 KB Output is correct
32 Correct 8 ms 972 KB Output is correct
33 Correct 5 ms 880 KB Output is correct
34 Correct 9 ms 972 KB Output is correct
35 Correct 8 ms 972 KB Output is correct
36 Correct 8 ms 988 KB Output is correct