Submission #380936

#TimeUsernameProblemLanguageResultExecution timeMemory
380936dolphingarlicDynamic Diameter (CEOI19_diameter)C++14
0 / 100
5077 ms240112 KiB
/* CEOI 2019 Dynamic Diameter - Let's consider the second-last subtask - Precompute the distances from node 1 to each other node, and sort the nodes by DFS order - When we update an edge, we change all distances in a subtree by a fixed amount, so we can use a lazy segtree to handle updates - The answer is simply the sum of the two best distances, which we can handle with range maximum queries - To solve the general case, use centroid decomposition - Complexity: O(N log^2 N) */ #include <bits/stdc++.h> #pragma GCC optimize("unroll-loops") #pragma GCC optimize("O3") #pragma GCC target("sse4,avx2,fma,avx") typedef long long ll; using namespace std; struct Segtree { int sz; vector<ll> vals, lazy; void push_lazy(int node, int l, int r) { vals[node] += lazy[node]; if (l != r) { lazy[node * 2] += lazy[node]; lazy[node * 2 + 1] += lazy[node]; } lazy[node] = 0; } void update(int a, int b, ll val, int node, int l, int r) { push_lazy(node, l, r); if (l > b || r < a) return; if (l >= a && r <= b) { lazy[node] = val; push_lazy(node, l, r); } else { int mid = (l + r) / 2; update(a, b, val, node * 2, l, mid); update(a, b, val, node * 2 + 1, mid + 1, r); vals[node] = max(vals[node * 2], vals[node * 2 + 1]); } } ll query(int a, int b, int node, int l, int r) { push_lazy(node, l, r); if (l > b || r < a) return 0; if (l >= a && r <= b) return vals[node]; int mid = (l + r) / 2; return max(query(a, b, node * 2, l, mid), query(a, b, node * 2 + 1, mid + 1, r)); } void build(vector<ll> &dists, int node, int l, int r) { if (l == r) vals[node] = dists[l]; else { int mid = (l + r) / 2; build(dists, node * 2, l, mid); build(dists, node * 2 + 1, mid + 1, r); vals[node] = max(vals[node * 2], vals[node * 2 + 1]); } } void init(vector<ll> &dists) { sz = dists.size(); vals.resize(4 * sz), lazy.resize(4 * sz); build(dists, 1, 1, sz); } } segtree[100001]; ll e_weight[100001]; pair<int, int> e_nodes[100001]; vector<pair<int, int>> graph[100001]; bool processed[100001]; int subtree[100001], c_par[100001], c_level[100001]; int tin[18][100001], tout[18][100001], timer; vector<int> c_timers[100001]; vector<ll> dists; multiset<ll> ms_all, ms_centroid[100001]; void get_subtree_sizes(int node, int parent = 0) { subtree[node] = 1; for (pair<int, int> i : graph[node]) if (i.first != parent && !processed[i.first]) { get_subtree_sizes(i.first, node); subtree[node] += subtree[i.first]; } } int get_centroid(int node, int parent, int tree_size) { for (pair<int, int> i : graph[node]) if (i.first != parent && !processed[i.first] && subtree[i.first] > tree_size) return get_centroid(i.first, node, tree_size); return node; } ll get_dists(int node, int parent, int level, ll curr_dist) { tin[level][node] = ++timer; dists.push_back(curr_dist); ll ret = curr_dist; for (pair<int, int> i : graph[node]) if (i.first != parent && !processed[i.first]) ret = max(ret, get_dists(i.first, node, level, curr_dist + e_weight[i.second])); tout[level][node] = timer; return ret; } void centroid_decomp(int node = 1, int prv_centroid = 0, int level = 0) { get_subtree_sizes(node); int centroid = get_centroid(node, 0, subtree[node] / 2); c_par[centroid] = prv_centroid; c_level[centroid] = level; dists.clear(); timer = 0; ms_centroid[centroid].insert(0), ms_centroid[centroid].insert(0); dists.push_back(0); for (pair<int, int> i : graph[centroid]) if (!processed[i.first]) { ms_centroid[centroid].insert( get_dists(i.first, centroid, level, e_weight[i.second])); c_timers[centroid].push_back(timer); } tin[level][centroid] = 0, tout[level][centroid] = timer + 1; segtree[centroid].init(dists); ms_all.insert(*ms_centroid[centroid].rbegin() + *next(ms_centroid[centroid].rbegin())); processed[centroid] = true; for (pair<int, int> i : graph[centroid]) if (!processed[i.first]) centroid_decomp(i.first, centroid, level + 1); } int main() { cin.tie(0)->sync_with_stdio(0); int n, q; ll w; cin >> n >> q >> w; for (int i = 0; i < n - 1; i++) { int u, v; cin >> u >> v >> e_weight[i]; graph[u].push_back({v, i}); graph[v].push_back({u, i}); e_nodes[i] = {u, v}; } centroid_decomp(); ll last = 0; while (q--) { int d; ll e; cin >> d >> e; d = (d + last) % (n - 1), e = (e + last) % w; ll delta = e - e_weight[d]; int u = e_nodes[d].first, v = e_nodes[d].second; int node = (c_level[u] < c_level[v] ? u : v); while (node) { auto lb = lower_bound( c_timers[node].begin(), c_timers[node].end(), min(tout[c_level[node]][u], tout[c_level[node]][v])); ms_all.erase(ms_all.find(*ms_centroid[node].rbegin() + *next(ms_centroid[node].rbegin()))); ms_centroid[node].erase(ms_centroid[node].find(segtree[node].query( *prev(lb) + 1, *lb, 1, 1, segtree[node].sz))); segtree[node].update( max(tin[c_level[node]][u], tin[c_level[node]][v]), min(tout[c_level[node]][u], tout[c_level[node]][v]), delta, 1, 1, segtree[node].sz); ms_centroid[node].insert(segtree[node].query(*prev(lb) + 1, *lb, 1, 1, segtree[node].sz)); ms_all.insert(*ms_centroid[node].rbegin() + *next(ms_centroid[node].rbegin())); node = c_par[node]; } e_weight[d] = e; cout << "\nCurrent: "; for (ll i : ms_all) cout << i << ' '; cout << '\n'; last = *ms_all.rbegin(); cout << last << '\n'; } return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...