This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
/*
CEOI 2019 Dynamic Diameter
- Let's consider the second-last subtask
- Precompute the distances from node 1 to each other node, and sort
the nodes by DFS order
- When we update an edge, we change all distances in a subtree by a fixed
amount, so we can use a lazy segtree to handle updates
- The answer is simply the sum of the two best distances, which we can handle
with range maximum queries
- To solve the general case, use centroid decomposition
- Complexity: O(N log^2 N)
*/
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
struct Segtree {
int sz;
vector<ll> vals, lazy;
void push_lazy(int node, int l, int r) {
vals[node] += lazy[node];
if (l != r) {
lazy[node * 2] += lazy[node];
lazy[node * 2 + 1] += lazy[node];
}
lazy[node] = 0;
}
void update(int a, int b, ll val, int node, int l, int r) {
push_lazy(node, l, r);
if (l > b || r < a) return;
if (l >= a && r <= b) {
lazy[node] = val;
push_lazy(node, l, r);
} else {
int mid = (l + r) / 2;
update(a, b, val, node * 2, l, mid);
update(a, b, val, node * 2 + 1, mid + 1, r);
vals[node] = max(vals[node * 2], vals[node * 2 + 1]);
}
}
ll query(int a, int b, int node, int l, int r) {
push_lazy(node, l, r);
if (l > b || r < a) return 0;
if (l >= a && r <= b) return vals[node];
int mid = (l + r) / 2;
return max(query(a, b, node * 2, l, mid),
query(a, b, node * 2 + 1, mid + 1, r));
}
void build(vector<ll> &dists, int node, int l, int r) {
if (l == r)
vals[node] = dists[l];
else {
int mid = (l + r) / 2;
build(dists, node * 2, l, mid);
build(dists, node * 2 + 1, mid + 1, r);
vals[node] = max(vals[node * 2], vals[node * 2 + 1]);
}
}
void init(vector<ll> &dists) {
sz = dists.size();
vals.resize(4 * sz), lazy.resize(4 * sz);
build(dists, 1, 1, sz);
}
} segtree[100001];
ll e_weight[100001];
pair<int, int> e_nodes[100001];
vector<pair<int, int>> graph[100001];
bool processed[100001];
int subtree[100001], c_par[100001], c_level[100001];
int tin[18][100001], tout[18][100001], timer;
set<int> c_timers[100001];
vector<ll> dists;
multiset<ll> ms_all, ms_centroid[100001];
void get_subtree_sizes(int node, int parent = 0) {
subtree[node] = 1;
for (pair<int, int> i : graph[node])
if (i.first != parent && !processed[i.first]) {
get_subtree_sizes(i.first, node);
subtree[node] += subtree[i.first];
}
}
int get_centroid(int node, int parent, int tree_size) {
for (pair<int, int> i : graph[node])
if (i.first != parent && !processed[i.first] &&
subtree[i.first] > tree_size)
return get_centroid(i.first, node, tree_size);
return node;
}
ll get_dists(int node, int parent, int level, ll curr_dist) {
tin[level][node] = ++timer;
dists.push_back(curr_dist);
ll ret = curr_dist;
for (pair<int, int> i : graph[node])
if (i.first != parent && !processed[i.first])
ret = max(ret, get_dists(i.first, node, level,
curr_dist + e_weight[i.second]));
tout[level][node] = timer;
return ret;
}
void centroid_decomp(int node = 1, int prv_centroid = 0, int level = 0) {
get_subtree_sizes(node);
int centroid = get_centroid(node, 0, subtree[node] / 2);
c_par[centroid] = prv_centroid;
c_level[centroid] = level;
dists.clear();
timer = 0;
ms_centroid[centroid].insert(0), ms_centroid[centroid].insert(0);
dists.push_back(0);
for (pair<int, int> i : graph[centroid])
if (!processed[i.first]) {
ms_centroid[centroid].insert(
get_dists(i.first, centroid, level, e_weight[i.second]));
c_timers[centroid].insert(timer);
}
tin[level][centroid] = 0, tout[level][centroid] = timer + 1;
segtree[centroid].init(dists);
ms_all.insert(*ms_centroid[centroid].rbegin() +
*next(ms_centroid[centroid].rbegin()));
processed[centroid] = true;
for (pair<int, int> i : graph[centroid])
if (!processed[i.first]) centroid_decomp(i.first, centroid, level + 1);
}
int main() {
cin.tie(0)->sync_with_stdio(0);
int n, q;
ll w;
cin >> n >> q >> w;
for (int i = 0; i < n - 1; i++) {
int u, v;
cin >> u >> v >> e_weight[i];
graph[u].push_back({v, i});
graph[v].push_back({u, i});
e_nodes[i] = {u, v};
}
centroid_decomp();
ll last = 0;
while (q--) {
int d;
ll e;
cin >> d >> e;
d = (d + last) % (n - 1), e = (e + last) % w;
ll delta = e - e_weight[d];
int u = e_nodes[d].first, v = e_nodes[d].second;
int node = (c_level[u] < c_level[v] ? u : v);
while (node) {
auto lb = c_timers[node].lower_bound(
min(tout[c_level[node]][u], tout[c_level[node]][v]));
ms_all.erase(ms_all.find(*ms_centroid[node].rbegin() +
*next(ms_centroid[node].rbegin())));
ms_centroid[node].erase(ms_centroid[node].find(segtree[node].query(
*prev(lb) + 1, *lb, 1, 1, segtree[node].sz)));
segtree[node].update(
max(tin[c_level[node]][u], tin[c_level[node]][v]),
min(tout[c_level[node]][u], tout[c_level[node]][v]), delta, 1,
1, segtree[node].sz);
ms_centroid[node].insert(segtree[node].query(*prev(lb) + 1, *lb, 1,
1, segtree[node].sz));
ms_all.insert(*ms_centroid[node].rbegin() +
*next(ms_centroid[node].rbegin()));
node = c_par[node];
}
e_weight[d] = e;
last = *ms_all.rbegin();
cout << last << '\n';
}
return 0;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |