# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
374587 |
2021-03-07T13:42:28 Z |
Karliver |
Raisins (IOI09_raisins) |
C++14 |
|
1297 ms |
26992 KB |
#include <bits/stdc++.h>
#include <fstream>
#define FIXED_FLOAT(x) std::fixed <<std::setprecision(3)<<(x)
#define all(v) (v).begin(), (v).end()
using namespace std;
#define forn(i,n) for (int i = 0; i < (n); ++i)
using ll = long long;
int mod = (ll)1e9 + 7;
#define PI acos(-1)
typedef pair<int, int> pairs;
typedef complex<ll> G;
const int INF = 1e9 + 1;
const int N = 51;
const double eps = 1e-3;
template <typename XPAX>
void ckma(XPAX &x, XPAX y) {
x = (x < y ? y : x);
}
template <typename XPAX>
void ckmi(XPAX &x, XPAX y) {
x = (x > y ? y : x);
}
ll power(ll a, ll b){
if(!b)
return 1;
ll c=power(a,b/2);
c=(1LL*c*c);
if(b%2)
c=(1LL*c*a);
return c;
}
int mul(int a, int b) {
return a * 1ll * b % mod;
}
int add(int a, int b) {
int s = (a+b);
if (s>=mod) s-=mod;
return s;
}
struct RMQ {
vector<vector<int>>st;
RMQ(vector<int> &a) {
int n = a.size();
int k = ceil(log2(n));
st.clear();
st = vector<vector<int>>(n, vector<int>(k + 1, INF));
for(int i = 0;i < n;++i) {
st[i][0] = a[i];
}
for(int j = 1;j <= k;++j) {
for(int i = 0;i + (1 << j) <= n;++i) {
st[i][j] = min(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]);
}
}
}
int rng_q(int l, int r) {
//if(l > r)return -1;
int j = log2(r - l + 1);
int ans = min(st[l][j], st[r - (1 << j) + 1][j]);
return ans;
}
};
template<long long mod = 1000000007>
struct modint{
long long a;
modint() : a(0){}
modint(long long t){
a = t % mod;
if(a < 0) a += mod;
}
operator long long() const{ return a; }
bool operator==(const modint &x) const{ return a == x.a; }
bool operator!=(const modint &x) const{ return a != x.a; }
modint operator-() const{ return modint(a ? (mod - a) : 0); }
modint operator~() const{ return pow(mod - 2); }
modint operator+(const modint &x) const{ return modint(*this) += x; }
modint operator-(const modint &x) const{ return modint(*this) -= x; }
modint operator*(const modint &x) const{ return modint(*this) *= x; }
modint operator/(const modint &x) const{ return modint(*this) /= x; }
modint &operator+=(const modint &x){
a += x.a;
if(a >= mod) a -= mod;
return *this;
}
modint &operator-=(const modint &x){
a -= x.a;
if(a < 0) a += mod;
return *this;
}
modint &operator*=(const modint &x){
a = a * x.a % mod;
return *this;
}
modint &operator/=(const modint &x){
a = a * (~x).a % mod;
return *this;
}
friend ostream &operator<<(ostream &os,const modint &x){
return os << x.a;
}
friend istream &operator>>(istream &is,modint &x){
long long t;
is >> t;
x = modint(t);
return is;
}
modint pow(long long x) const{
modint ret = 1,tmp = a;
for(;x;tmp *= tmp,x >>= 1){
if(x & 1) ret *= tmp;
}
return ret;
}
};
const ll MOD = 1e9 + 7;
using Mint = modint<MOD>;
template<class T>
struct Combination{
vector<T> fact,factinv;
Combination(int n) : fact(n + 1),factinv(n + 1){
fact[0] = 1;
for(int i = 1;i <= n;i++) fact[i] = fact[i - 1] * T(i);
factinv[n] = ~fact[n];
for(int i = n;i >= 1;i--) factinv[i - 1] = factinv[i] * T(i);
}
T nCr(int n,int r){
if(n < 0 || r < 0 || n < r) return 0;
return fact[n] * factinv[r] * factinv[n - r];
}
T factorial(int x) {
if(x < 0)return 0;
return fact[x];
}
};
void done() {
// -1
// 1 -2
// -2
}
void solve()
{
// 4 5 2 3 1
// 1 -3 1 -2
// 4 6 3 1 5 2
// 2 -3 -2 4 -3
int n, m;
cin >> n >> m;
int DP[N][N][N][N];
forn(i, N) forn(j, N) forn(l, N) forn(K, N) DP[i][j][l][K] = -1;
int pr[N][N];
forn(i, N)forn(j, N)pr[i][j] = 0;
vector<vector<int>> a(n + 1, vector<int>(m + 1));
for(int i = 1;i <= n;++i) {
for(int j = 1;j <= m;++j) {
cin >> a[i][j];
pr[i][j] = pr[i - 1][j] + pr[i][j - 1] - pr[i - 1][j - 1] + a[i][j];
}
}
function<int(int, int, int, int)> dfs = [&](int x1, int y1, int x2, int y2) {
if (DP[x1][y1][x2][y2] > -1)
return DP[x1][y1][x2][y2];
if (x1 == x2 && y1 == y2)
{
DP[x1][y1][x2][y2] = 0;
return 0;
}
int res = INT_MAX;
int n1 = 0;
int n2 = 0;
for (int i = x1; i < x2; i++)
{
n1 = dfs(x1,y1,i,y2);
n2 = dfs(i + 1,y1,x2,y2);
if (n1 + n2 < res)
res = n1 + n2;
}
for (int i = y1; i < y2; i++)
{
n1 = dfs(x1,y1,x2,i);
n2 = dfs(x1,i + 1,x2,y2);
if (n1 + n2 < res)
res = n1 + n2;
}
res += pr[x2][y2] - pr[x1 - 1][y2] - pr[x2][y1 - 1] + pr[x1 - 1][y1 - 1];
DP[x1][y1][x2][y2] = res;
return res;
};
cout << dfs(1, 1, n, m) << '\n';
}
void emer() {
}
void another() {
// 10011
//
int n, q;
cin>> n >> q;
vector<int> c(n);
for(int i = 0;i < n;++i) {
cin >> c[i];
}
vector<vector<pair<int, pairs>>> qur(n);
for(int i = 0;i < q;++i) {
int l, r;
cin>> l >> r;
--l;
--r;
qur[r].push_back({l, {i, 1}});
if(l) {
qur[l - 1].push_back({l, {i, -1}});
}
}
vector<int> f(n);
auto inc = [&](int x) {
for(; x < n;x = (x | (x + 1))) f[x]++;
};
auto get = [&](int x) {
int ans =0;
for(; x >= 0;x = (x & (x + 1)) - 1)
ans += f[x];
return ans;
};
vector<int> ret(q);
map<int, int> last;
vector<int> pev(n, -1);
for(int i = 0;i < n;++i) {
if(last.count(c[i])) {
pev[i] = last[c[i]];
}
last[c[i]] = i;
inc(pev[i] + 1);
for(auto c : qur[i]) {
ret[c.second.first] += get(c.first) * c.second.second;
//cout << ret[c.second.first] << '\n';
}
}
forn(i, q) cout << ret[i] << '\n';
// 1 6 4 1 2 2 8
// (1, 3) (2, 5)
// 3 0 0 0 0 0 0
}
void test_case() {
int t;
cin >> t;
while(t--)solve();
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
solve();
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
19 ms |
26860 KB |
Output is correct |
2 |
Correct |
19 ms |
26860 KB |
Output is correct |
3 |
Correct |
23 ms |
26860 KB |
Output is correct |
4 |
Correct |
19 ms |
26860 KB |
Output is correct |
5 |
Correct |
19 ms |
26860 KB |
Output is correct |
6 |
Correct |
20 ms |
26860 KB |
Output is correct |
7 |
Correct |
20 ms |
26860 KB |
Output is correct |
8 |
Correct |
33 ms |
26860 KB |
Output is correct |
9 |
Correct |
44 ms |
26860 KB |
Output is correct |
10 |
Correct |
58 ms |
26860 KB |
Output is correct |
11 |
Correct |
50 ms |
26860 KB |
Output is correct |
12 |
Correct |
140 ms |
26860 KB |
Output is correct |
13 |
Correct |
226 ms |
26880 KB |
Output is correct |
14 |
Correct |
72 ms |
26860 KB |
Output is correct |
15 |
Correct |
287 ms |
26860 KB |
Output is correct |
16 |
Correct |
39 ms |
26860 KB |
Output is correct |
17 |
Correct |
124 ms |
26860 KB |
Output is correct |
18 |
Correct |
697 ms |
26988 KB |
Output is correct |
19 |
Correct |
1105 ms |
26860 KB |
Output is correct |
20 |
Correct |
1297 ms |
26992 KB |
Output is correct |