Submission #349091

# Submission time Handle Problem Language Result Execution time Memory
349091 2021-01-16T16:17:00 Z ACmachine Vision Program (IOI19_vision) C++17
0 / 100
24 ms 3052 KB
#include "vision.h"

#include <bits/stdc++.h>
using namespace std;

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T, typename U> using ordered_map = tree<T, U, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

typedef long long ll;
typedef long double ld;
typedef double db;
typedef string str;

typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<pii> vpii;
typedef vector<pll> vpll;
typedef vector<str> vstr;

#define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
#define FORD(i,j,k,in) for(int i=(j); i >=(k);i-=in)
#define REP(i,b) FOR(i,0,b,1)
#define REPD(i,b) FORD(i,b,0,1)
#define pb push_back 
#define mp make_pair
#define ff first
#define ss second
#define all(x) begin(x), end(x)
#define rsz resize 
#define MANY_TESTS int tcase; cin >> tcase; while(tcase--)
	
const double EPS = 1e-9;
const int MOD = 1e9+7; // 998244353;
const ll INFF = 1e18;
const int INF = 1e9;
const ld PI = acos((ld)-1);
const vi dy = {1, 0, -1, 0, -1, 1, 1, -1};
const vi dx = {0, 1, 0, -1, -1, 1, -1, 1};

#ifdef DEBUG
#define DBG if(1)
#else
#define DBG if(0)
#endif

#define dbg(x) cout << "(" << #x << " : " << x << ")" << endl;
// ostreams
template <class T, class U>
ostream& operator<<(ostream& out, const pair<T, U> &par) {out << "[" << par.first << ";" << par.second << "]"; return out;}
template <class T>
ostream& operator<<(ostream& out, const set<T> &cont) { out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template <class T, class U>
ostream& operator<<(ostream& out, const map<T, U> &cont) {out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template<class T>
ostream& operator<<(ostream& out, const vector<T> &v){ out << "[";  REP(i, v.size()) out << v[i] << ", ";  out << "]"; return out;}
// istreams
template<class T>
istream& operator>>(istream& in, vector<T> &v){ for(auto &x : v) in >> x; return in; }
template<class T, class U>
istream& operator>>(istream& in, pair<T, U> &p){ in >> p.ff >> p.ss; return in; }
//searches
template<typename T, typename U>
T bsl(T lo, T hi, U f){ hi++; T mid; while(lo < hi){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid+1; } return lo; }
template<typename U>
double bsld(double lo, double hi, U f, double p = 1e-9){ int r = 3 + (int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid; } return (lo + hi)/2; }
template<typename T, typename U>
T bsh(T lo, T hi, U f){ lo--; T mid; while(lo < hi){ mid = (lo + hi + 1)/2; f(mid) ? lo = mid : hi = mid-1; } return lo; }
template<typename U>
double bshd(double lo, double hi, U f, double p = 1e-9){ int r = 3+(int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? lo = mid : hi = mid; } return (lo + hi)/2; }
// some more utility functions
template<typename T>
pair<T, int> get_min(vector<T> &v){ typename vector<T> :: iterator it = min_element(v.begin(), v.end()); return mp(*it, it - v.begin());}
template<typename T>
pair<T, int> get_max(vector<T> &v){ typename vector<T> :: iterator it = max_element(v.begin(), v.end()); return mp(*it, it - v.begin());}        
template<typename T> bool ckmin(T& a, const T& b){return b < a ? a = b , true : false;}
template<typename T> bool ckmax(T& a, const T& b){return b > a ? a = b, true : false;}

int solve_x(int h, int w, int k){
    // 2 diagonals
    vector<vi> diag1(h + w + 5); // (r + a, c + a); d = r - c; -> cmax = w - 1; -> offset = w - 1;
    vector<vi> diag2(h + w + 5); // (r + a, c - a); d = r + c; 
    REP(i, h){
        REP(j, w){
            diag1[i - j + w - 1].pb(i * w + j);
            diag2[i + j].pb(i * w + j);
        }
    }
    vi diag1_res;
    vi diag2_res;
    REP(i, h + w + 4){
        if(diag1[i].empty()) continue;
        diag1_res.pb(add_or(diag1[i]));
    }
    REP(i, h + w + 4){
        if(diag2[i].empty()) continue;
        diag2_res.pb(add_or(diag2[i]));
    } 
    vi sliding1;
    vi sliding2;
    REP(i, (int)diag1_res.size() - k + 1){
        vi curr;
        REP(j, k){
            curr.pb(diag1_res[i + j]);
        }
        int op1 = add_or(curr);
        int op2 = add_xor(curr);
        int op3 = add_not(op2);
        int re = add_and({op1, op3});
        sliding1.pb(re);
    }
    REP(i, (int)diag2_res.size() - k + 1){
        vi curr;
        REP(j, k){
            curr.pb(diag2_res[i + j]);
        }
        int op1 = add_or(curr);
        int op2 = add_xor(curr);
        int op3 = add_not(op2);
        int re = add_and({op1, op3});
        sliding2.pb(re);
    }
    vi curr;
    int on1 = add_xor(diag1_res);
    int on2 = add_xor(diag2_res);
    int iswith1 = add_or(sliding1);
    int iswith2 = add_or(sliding2);
    int res1 = add_or({on1, iswith1});
    int res2 = add_or({on2, iswith2});
    return add_or({res1, res2}); 
}
void construct_network(int H, int W, int K) {
    if(K == H + W - 2){
        solve_x(H,W, K);        
    }
    else{
        add_xor({solve_x(H, W, K), solve_x(H, W, K+1)});
    }
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Incorrect 1 ms 364 KB on inputs (0, 0), (0, 1), expected 0, but computed 1
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Incorrect 1 ms 364 KB on inputs (0, 0), (0, 1), expected 0, but computed 1
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Incorrect 1 ms 364 KB on inputs (0, 0), (0, 1), expected 0, but computed 1
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Incorrect 1 ms 364 KB on inputs (0, 0), (0, 1), expected 0, but computed 1
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 4 ms 620 KB Output is correct
2 Correct 14 ms 1180 KB Output is correct
3 Correct 10 ms 1132 KB Output is correct
4 Incorrect 1 ms 364 KB on inputs (0, 0), (0, 1), expected 0, but computed 1
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Incorrect 1 ms 364 KB on inputs (0, 0), (0, 1), expected 0, but computed 1
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 24 ms 3052 KB on inputs (126, 120), (176, 169), expected 0, but computed 1
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Incorrect 1 ms 364 KB on inputs (0, 0), (0, 1), expected 0, but computed 1
3 Halted 0 ms 0 KB -