#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef double db;
typedef string str;
typedef pair<int,int> pi;
typedef pair<ll,ll> pl;
typedef pair<db,db> pd;
typedef vector<int> vi;
typedef vector<bool> vb;
typedef vector<ll> vl;
typedef vector<db> vd;
typedef vector<str> vs;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<pd> vpd;
#define mp make_pair
#define f first
#define s second
#define sz(x) (int)(x).size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend()
#define sor(x) sort(all(x))
#define rsz resize
#define ins insert
#define ft front()
#define bk back()
#define pf push_front
#define pb push_back
#define eb emplace_back
#define lb lower_bound
#define ub upper_bound
#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)
const int MOD = 1e9+7; // 998244353;
const int MX = 2e5+5;
const ll INF = 1e18;
const ld PI = acos((ld)-1);
const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1};
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count());
template<class T> bool ckmin(T& a, const T& b) {
return b < a ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) {
return a < b ? a = b, 1 : 0; }
constexpr int pct(int x) { return __builtin_popcount(x); }
constexpr int bits(int x) { return 31-__builtin_clz(x); } // floor(log2(x))
ll cdiv(ll a, ll b) { return a/b+((a^b)>0&&a%b); } // divide a by b rounded up
ll fdiv(ll a, ll b) { return a/b-((a^b)<0&&a%b); } // divide a by b rounded down
ll half(ll x) { return fdiv(x,2); }
template<class T, class U> T fstTrue(T lo, T hi, U f) {
// note: if (lo+hi)/2 is used instead of half(lo+hi) then this will loop infinitely when lo=hi
hi ++; assert(lo <= hi); // assuming f is increasing
while (lo < hi) { // find first index such that f is true
T mid = half(lo+hi);
f(mid) ? hi = mid : lo = mid+1;
}
return lo;
}
template<class T, class U> T lstTrue(T lo, T hi, U f) {
lo --; assert(lo <= hi); // assuming f is decreasing
while (lo < hi) { // find first index such that f is true
T mid = half(lo+hi+1);
f(mid) ? lo = mid : hi = mid-1;
}
return lo;
}
template<class T> void remDup(vector<T>& v) {
sort(all(v)); v.erase(unique(all(v)),end(v)); }
// INPUT
template<class A> void re(complex<A>& c);
template<class A, class B> void re(pair<A,B>& p);
template<class A> void re(vector<A>& v);
template<class A, size_t SZ> void re(array<A,SZ>& a);
template<class T> void re(T& x) { cin >> x; }
void re(db& d) { str t; re(t); d = stod(t); }
void re(ld& d) { str t; re(t); d = stold(t); }
template<class H, class... T> void re(H& h, T&... t) { re(h); re(t...); }
template<class A> void re(complex<A>& c) { A a,b; re(a,b); c = {a,b}; }
template<class A, class B> void re(pair<A,B>& p) { re(p.f,p.s); }
template<class A> void re(vector<A>& x) { trav(a,x) re(a); }
template<class A, size_t SZ> void re(array<A,SZ>& x) { trav(a,x) re(a); }
// TO_STRING
#define ts to_string
str ts(char c) { return str(1,c); }
str ts(const char* s) { return (str)s; }
str ts(str s) { return s; }
str ts(bool b) {
#ifdef LOCAL
return b ? "true" : "false";
#else
return ts((int)b);
#endif
}
template<class A> str ts(complex<A> c) {
stringstream ss; ss << c; return ss.str(); }
str ts(vector<bool> v) {
str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]);
res += "}"; return res; }
template<size_t SZ> str ts(bitset<SZ> b) {
str res = ""; F0R(i,SZ) res += char('0'+b[i]);
return res; }
template<class A, class B> str ts(pair<A,B> p);
template<class T> str ts(T v) { // containers with begin(), end()
#ifdef LOCAL
bool fst = 1; str res = "{";
for (const auto& x: v) {
if (!fst) res += ", ";
fst = 0; res += ts(x);
}
res += "}"; return res;
#else
bool fst = 1; str res = "";
for (const auto& x: v) {
if (!fst) res += " ";
fst = 0; res += ts(x);
}
return res;
#endif
}
template<class A, class B> str ts(pair<A,B> p) {
#ifdef LOCAL
return "("+ts(p.f)+", "+ts(p.s)+")";
#else
return ts(p.f)+" "+ts(p.s);
#endif
}
// OUTPUT
template<class A> void pr(A x) { cout << ts(x); }
template<class H, class... T> void pr(const H& h, const T&... t) {
pr(h); pr(t...); }
void ps() { pr("\n"); } // print w/ spaces
template<class H, class... T> void ps(const H& h, const T&... t) {
pr(h); if (sizeof...(t)) pr(" "); ps(t...); }
// DEBUG
void DBG() { cerr << "]" << endl; }
template<class H, class... T> void DBG(H h, T... t) {
cerr << ts(h); if (sizeof...(t)) cerr << ", ";
DBG(t...); }
#ifdef LOCAL // compile with -DLOCAL, chk -> fake assert
#define dbg(...) cerr << "Line(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
#define chk(...) if (!(__VA_ARGS__)) cerr << "Line(" << __LINE__ << ") -> function(" \
<< __FUNCTION__ << ") -> CHK FAILED: (" << #__VA_ARGS__ << ")" << "\n", exit(0);
#else
#define dbg(...) 0
#define chk(...) 0
#endif
// FILE I/O
void setIn(str s) { freopen(s.c_str(),"r",stdin); }
void setOut(str s) { freopen(s.c_str(),"w",stdout); }
void unsyncIO() { cin.tie(0)->sync_with_stdio(0); }
void setIO(str s = "") {
unsyncIO();
// cin.exceptions(cin.failbit);
// throws exception when do smth illegal
// ex. try to read letter into int
if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}
/**
* Description: Hash map with the same API as unordered\_map, but \tilde 3x faster.
* Initial capacity must be a power of 2 if provided.
* Source: KACTL
* Usage: ht<int,int> h({},{},{},{},{1<<16});
*/
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
struct chash { /// use most bits rather than just the lowest ones
const uint64_t C = ll(2e18*PI)+71; // large odd number
const int RANDOM = rng();
ll operator()(ll x) const { /// https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
return __builtin_bswap64((x^RANDOM)*C); }
};
template<class K,class V> using um = unordered_map<K,V,chash>;
template<class K,class V> using ht = gp_hash_table<K,V,chash>;
template<class K,class V> V get(ht<K,V>& u, K x) {
auto it = u.find(x); return it == end(u) ? 0 : it->s; }
template<class K,class V> void ERASE(ht<K,V>& u, K x) {
if(u.find(x) != u.end()) u.erase(x); }
ll toll(int a, int b){
return ll(100005)*ll(a)+ll(b);
}
const int mx = 100005;
int N, M;
int A[300005];
int B[300005];
ll ans;
int indeg[mx];
vpi elist;
vector<bool> inactive;
vi grpeds[mx]; //includes inactive edges
ht<ll, null_type> ntog;
ht<ll, null_type> gtog;
queue<pi> mergers;
/**
* Description: Disjoint Set Union with path compression
* and union by size. Add edges and test connectivity.
* Use for Kruskal's or Boruvka's minimum spanning tree.
* Time: O(\alpha(N))
* Source: CSAcademy, KACTL
* Verification: *
*/
struct DSU {
vi e; void init(int N) { e = vi(N,-1); }
int get(int x) { return e[x] < 0 ? x : e[x] = get(e[x]); }
bool sameSet(int a, int b) { return get(a) == get(b); }
int size(int x) { return -e[get(x)]; }
void merge(int X, int Y){
X = get(X);
Y = get(Y);
if(X == Y) return;
if(sz(grpeds[Y]) > sz(grpeds[X])){
swap(X, Y);
}
//dbg(X, Y);
for(auto u: grpeds[Y]){
if(inactive[u]) continue;
if(get(elist[u].f) == X){
ans-=size(Y);
indeg[Y]--;
inactive[u] = 1;
//ntog.erase(toll(elist[u].f, elist[u].s));
ERASE(ntog, toll(elist[u].f, elist[u].s));
}
else if(elist[u].s == X){
ans-=size(X);
indeg[X]--;
inactive[u] = 1;
//ntog.erase(toll(elist[u].f, elist[u].s));
ERASE(ntog, toll(elist[u].f, elist[u].s));
}
}
ERASE(gtog, toll(X, Y));
ERASE(gtog, toll(Y, X));
ans-=ll(size(X))*ll(size(X)-1);
ans-=ll(size(Y))*ll(size(Y)-1);
ans+=ll(size(X)+size(Y))*ll(size(X)+size(Y)-1);
for(auto u: grpeds[Y]){
if(inactive[u]) continue;
if(get(elist[u].f) == Y){ //out edge
grpeds[X].pb(u);
ERASE(gtog, toll(Y, elist[u].s));
gtog.ins(toll(X, elist[u].s));
}
else{ //in edge
int a = elist[u].f;
if(ntog.find(toll(a, X)) != ntog.end()){ //edge already exists
ans-=size(Y);
indeg[Y]--;
inactive[u] = 1;
//ntog.erase(toll(elist[u].f, elist[u].s));
ERASE(ntog, toll(elist[u].f, elist[u].s));
ERASE(gtog, toll(get(a), Y));
}
else{ //remove and add edge
ans-=size(Y);
ans+=size(X);
indeg[Y]--;
indeg[X]++;
elist[u].s = X;
grpeds[X].pb(u);
//ntog.erase(toll(elist[u].f, Y));
ERASE(ntog, toll(elist[u].f, Y));
ntog.ins(toll(elist[u].f, X));
ERASE(gtog, toll(get(a), Y));
gtog.ins(toll(get(a), X));
}
}
}
ans+=ll(size(Y))*ll(indeg[X]);
e[X] += e[Y]; e[Y] = X;
for(auto u: grpeds[Y]){
if(inactive[u]) continue;
int A = get(elist[u].f);
int B = get(elist[u].s);
assert(A != B);
if(gtog.find(toll(A, B)) != gtog.end() && gtog.find(toll(B, A)) != gtog.end()){
mergers.push(mp(A, B));
}
}
grpeds[Y].clear();
}
bool unite(int x, int y) { // union by size
int X = get(x);
int Y = get(y);
if (X == Y) return 0;
if(ntog.find(toll(x, Y)) != ntog.end()) return 0;
if(gtog.find(toll(Y, X)) == gtog.end()){
ans+=size(Y);
indeg[Y]++;
int eind = sz(elist);
elist.pb(mp(x, Y));
inactive.pb(0);
grpeds[X].pb(eind); grpeds[Y].pb(eind);
ntog.ins(toll(x, Y)); gtog.ins(toll(X, Y));
return 1;
}
//MERGE
mergers.push(mp(X, Y));
return 1;
}
};
/**template<class T> T kruskal(int N, vector<pair<T,pi>> ed) {
sort(all(ed));
T ans = 0; DSU D; D.init(N); // edges that unite are in MST
trav(a,ed) if (D.unite(a.s.f,a.s.s)) ans += a.f;
return ans;
}*/
DSU dsu;
int main() {
setIO();
int N, M;
cin >> N >> M;
for(int i = 1; i <= M; i++){
cin >> A[i] >> B[i];
}
dsu.init(N+5);
for(int i = 1; i <= M; i++){
dsu.unite(A[i], B[i]);
while(sz(mergers)){
pi a = mergers.front();
mergers.pop();
dsu.merge(a.f, a.s);
}
ps(ans);
}
// you should actually read the stuff at the bottom
}
/* stuff you should look for
* int overflow, array bounds
* special cases (n=1?)
* do smth instead of nothing and stay organized
* WRITE STUFF DOWN
*/
Compilation message
joitter2.cpp: In function 'void setIn(str)':
joitter2.cpp:168:28: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
168 | void setIn(str s) { freopen(s.c_str(),"r",stdin); }
| ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
joitter2.cpp: In function 'void setOut(str)':
joitter2.cpp:169:29: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
169 | void setOut(str s) { freopen(s.c_str(),"w",stdout); }
| ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
2668 KB |
Output is correct |
2 |
Correct |
2 ms |
2668 KB |
Output is correct |
3 |
Correct |
2 ms |
2668 KB |
Output is correct |
4 |
Correct |
2 ms |
2668 KB |
Output is correct |
5 |
Correct |
2 ms |
2668 KB |
Output is correct |
6 |
Correct |
2 ms |
2668 KB |
Output is correct |
7 |
Correct |
3 ms |
2796 KB |
Output is correct |
8 |
Correct |
3 ms |
2796 KB |
Output is correct |
9 |
Correct |
3 ms |
2796 KB |
Output is correct |
10 |
Correct |
2 ms |
2668 KB |
Output is correct |
11 |
Correct |
2 ms |
2668 KB |
Output is correct |
12 |
Correct |
2 ms |
2668 KB |
Output is correct |
13 |
Correct |
2 ms |
2668 KB |
Output is correct |
14 |
Correct |
2 ms |
2668 KB |
Output is correct |
15 |
Correct |
2 ms |
2668 KB |
Output is correct |
16 |
Correct |
2 ms |
2668 KB |
Output is correct |
17 |
Correct |
2 ms |
2668 KB |
Output is correct |
18 |
Correct |
2 ms |
2668 KB |
Output is correct |
19 |
Correct |
2 ms |
2668 KB |
Output is correct |
20 |
Correct |
3 ms |
2668 KB |
Output is correct |
21 |
Correct |
3 ms |
2796 KB |
Output is correct |
22 |
Correct |
2 ms |
2668 KB |
Output is correct |
23 |
Correct |
3 ms |
2812 KB |
Output is correct |
24 |
Correct |
2 ms |
2796 KB |
Output is correct |
25 |
Correct |
3 ms |
2816 KB |
Output is correct |
26 |
Correct |
2 ms |
2668 KB |
Output is correct |
27 |
Correct |
2 ms |
2668 KB |
Output is correct |
28 |
Correct |
2 ms |
2668 KB |
Output is correct |
29 |
Correct |
2 ms |
2668 KB |
Output is correct |
30 |
Correct |
2 ms |
2668 KB |
Output is correct |
31 |
Correct |
3 ms |
2796 KB |
Output is correct |
32 |
Correct |
2 ms |
2668 KB |
Output is correct |
33 |
Correct |
3 ms |
2796 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
2668 KB |
Output is correct |
2 |
Correct |
2 ms |
2668 KB |
Output is correct |
3 |
Correct |
2 ms |
2668 KB |
Output is correct |
4 |
Correct |
2 ms |
2668 KB |
Output is correct |
5 |
Correct |
2 ms |
2668 KB |
Output is correct |
6 |
Correct |
2 ms |
2668 KB |
Output is correct |
7 |
Correct |
3 ms |
2796 KB |
Output is correct |
8 |
Correct |
3 ms |
2796 KB |
Output is correct |
9 |
Correct |
3 ms |
2796 KB |
Output is correct |
10 |
Correct |
2 ms |
2668 KB |
Output is correct |
11 |
Correct |
2 ms |
2668 KB |
Output is correct |
12 |
Correct |
2 ms |
2668 KB |
Output is correct |
13 |
Correct |
2 ms |
2668 KB |
Output is correct |
14 |
Correct |
2 ms |
2668 KB |
Output is correct |
15 |
Correct |
2 ms |
2668 KB |
Output is correct |
16 |
Correct |
2 ms |
2668 KB |
Output is correct |
17 |
Correct |
2 ms |
2668 KB |
Output is correct |
18 |
Correct |
2 ms |
2668 KB |
Output is correct |
19 |
Correct |
2 ms |
2668 KB |
Output is correct |
20 |
Correct |
3 ms |
2668 KB |
Output is correct |
21 |
Correct |
3 ms |
2796 KB |
Output is correct |
22 |
Correct |
2 ms |
2668 KB |
Output is correct |
23 |
Correct |
3 ms |
2812 KB |
Output is correct |
24 |
Correct |
2 ms |
2796 KB |
Output is correct |
25 |
Correct |
3 ms |
2816 KB |
Output is correct |
26 |
Correct |
2 ms |
2668 KB |
Output is correct |
27 |
Correct |
2 ms |
2668 KB |
Output is correct |
28 |
Correct |
2 ms |
2668 KB |
Output is correct |
29 |
Correct |
2 ms |
2668 KB |
Output is correct |
30 |
Correct |
2 ms |
2668 KB |
Output is correct |
31 |
Correct |
3 ms |
2796 KB |
Output is correct |
32 |
Correct |
2 ms |
2668 KB |
Output is correct |
33 |
Correct |
3 ms |
2796 KB |
Output is correct |
34 |
Correct |
6 ms |
2924 KB |
Output is correct |
35 |
Correct |
124 ms |
10376 KB |
Output is correct |
36 |
Correct |
140 ms |
11692 KB |
Output is correct |
37 |
Correct |
140 ms |
11780 KB |
Output is correct |
38 |
Correct |
138 ms |
12072 KB |
Output is correct |
39 |
Correct |
5 ms |
2924 KB |
Output is correct |
40 |
Correct |
6 ms |
3052 KB |
Output is correct |
41 |
Correct |
6 ms |
3052 KB |
Output is correct |
42 |
Correct |
5 ms |
2924 KB |
Output is correct |
43 |
Correct |
5 ms |
3052 KB |
Output is correct |
44 |
Correct |
5 ms |
3052 KB |
Output is correct |
45 |
Correct |
5 ms |
2924 KB |
Output is correct |
46 |
Correct |
5 ms |
2924 KB |
Output is correct |
47 |
Correct |
5 ms |
3052 KB |
Output is correct |
48 |
Correct |
5 ms |
3052 KB |
Output is correct |
49 |
Correct |
11 ms |
3876 KB |
Output is correct |
50 |
Correct |
140 ms |
11656 KB |
Output is correct |
51 |
Correct |
9 ms |
3436 KB |
Output is correct |
52 |
Correct |
132 ms |
11276 KB |
Output is correct |
53 |
Correct |
10 ms |
3892 KB |
Output is correct |
54 |
Correct |
138 ms |
12036 KB |
Output is correct |
55 |
Correct |
6 ms |
3308 KB |
Output is correct |
56 |
Correct |
6 ms |
3308 KB |
Output is correct |
57 |
Correct |
6 ms |
3308 KB |
Output is correct |
58 |
Correct |
6 ms |
3308 KB |
Output is correct |
59 |
Correct |
5 ms |
2924 KB |
Output is correct |
60 |
Correct |
126 ms |
10220 KB |
Output is correct |
61 |
Correct |
6 ms |
3180 KB |
Output is correct |
62 |
Correct |
142 ms |
12036 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
2668 KB |
Output is correct |
2 |
Correct |
2 ms |
2668 KB |
Output is correct |
3 |
Correct |
2 ms |
2668 KB |
Output is correct |
4 |
Correct |
2 ms |
2668 KB |
Output is correct |
5 |
Correct |
2 ms |
2668 KB |
Output is correct |
6 |
Correct |
2 ms |
2668 KB |
Output is correct |
7 |
Correct |
3 ms |
2796 KB |
Output is correct |
8 |
Correct |
3 ms |
2796 KB |
Output is correct |
9 |
Correct |
3 ms |
2796 KB |
Output is correct |
10 |
Correct |
2 ms |
2668 KB |
Output is correct |
11 |
Correct |
2 ms |
2668 KB |
Output is correct |
12 |
Correct |
2 ms |
2668 KB |
Output is correct |
13 |
Correct |
2 ms |
2668 KB |
Output is correct |
14 |
Correct |
2 ms |
2668 KB |
Output is correct |
15 |
Correct |
2 ms |
2668 KB |
Output is correct |
16 |
Correct |
2 ms |
2668 KB |
Output is correct |
17 |
Correct |
2 ms |
2668 KB |
Output is correct |
18 |
Correct |
2 ms |
2668 KB |
Output is correct |
19 |
Correct |
2 ms |
2668 KB |
Output is correct |
20 |
Correct |
3 ms |
2668 KB |
Output is correct |
21 |
Correct |
3 ms |
2796 KB |
Output is correct |
22 |
Correct |
2 ms |
2668 KB |
Output is correct |
23 |
Correct |
3 ms |
2812 KB |
Output is correct |
24 |
Correct |
2 ms |
2796 KB |
Output is correct |
25 |
Correct |
3 ms |
2816 KB |
Output is correct |
26 |
Correct |
2 ms |
2668 KB |
Output is correct |
27 |
Correct |
2 ms |
2668 KB |
Output is correct |
28 |
Correct |
2 ms |
2668 KB |
Output is correct |
29 |
Correct |
2 ms |
2668 KB |
Output is correct |
30 |
Correct |
2 ms |
2668 KB |
Output is correct |
31 |
Correct |
3 ms |
2796 KB |
Output is correct |
32 |
Correct |
2 ms |
2668 KB |
Output is correct |
33 |
Correct |
3 ms |
2796 KB |
Output is correct |
34 |
Correct |
6 ms |
2924 KB |
Output is correct |
35 |
Correct |
124 ms |
10376 KB |
Output is correct |
36 |
Correct |
140 ms |
11692 KB |
Output is correct |
37 |
Correct |
140 ms |
11780 KB |
Output is correct |
38 |
Correct |
138 ms |
12072 KB |
Output is correct |
39 |
Correct |
5 ms |
2924 KB |
Output is correct |
40 |
Correct |
6 ms |
3052 KB |
Output is correct |
41 |
Correct |
6 ms |
3052 KB |
Output is correct |
42 |
Correct |
5 ms |
2924 KB |
Output is correct |
43 |
Correct |
5 ms |
3052 KB |
Output is correct |
44 |
Correct |
5 ms |
3052 KB |
Output is correct |
45 |
Correct |
5 ms |
2924 KB |
Output is correct |
46 |
Correct |
5 ms |
2924 KB |
Output is correct |
47 |
Correct |
5 ms |
3052 KB |
Output is correct |
48 |
Correct |
5 ms |
3052 KB |
Output is correct |
49 |
Correct |
11 ms |
3876 KB |
Output is correct |
50 |
Correct |
140 ms |
11656 KB |
Output is correct |
51 |
Correct |
9 ms |
3436 KB |
Output is correct |
52 |
Correct |
132 ms |
11276 KB |
Output is correct |
53 |
Correct |
10 ms |
3892 KB |
Output is correct |
54 |
Correct |
138 ms |
12036 KB |
Output is correct |
55 |
Correct |
6 ms |
3308 KB |
Output is correct |
56 |
Correct |
6 ms |
3308 KB |
Output is correct |
57 |
Correct |
6 ms |
3308 KB |
Output is correct |
58 |
Correct |
6 ms |
3308 KB |
Output is correct |
59 |
Correct |
5 ms |
2924 KB |
Output is correct |
60 |
Correct |
126 ms |
10220 KB |
Output is correct |
61 |
Correct |
6 ms |
3180 KB |
Output is correct |
62 |
Correct |
142 ms |
12036 KB |
Output is correct |
63 |
Correct |
400 ms |
61428 KB |
Output is correct |
64 |
Correct |
387 ms |
61428 KB |
Output is correct |
65 |
Correct |
401 ms |
61560 KB |
Output is correct |
66 |
Correct |
152 ms |
13792 KB |
Output is correct |
67 |
Correct |
282 ms |
18124 KB |
Output is correct |
68 |
Correct |
144 ms |
13920 KB |
Output is correct |
69 |
Correct |
218 ms |
18764 KB |
Output is correct |
70 |
Correct |
151 ms |
13792 KB |
Output is correct |
71 |
Correct |
145 ms |
13792 KB |
Output is correct |
72 |
Correct |
271 ms |
18124 KB |
Output is correct |
73 |
Correct |
272 ms |
18124 KB |
Output is correct |
74 |
Correct |
601 ms |
29944 KB |
Output is correct |
75 |
Correct |
332 ms |
27580 KB |
Output is correct |
76 |
Correct |
445 ms |
27452 KB |
Output is correct |
77 |
Correct |
471 ms |
27500 KB |
Output is correct |
78 |
Correct |
155 ms |
17272 KB |
Output is correct |
79 |
Correct |
295 ms |
23040 KB |
Output is correct |
80 |
Correct |
153 ms |
17272 KB |
Output is correct |
81 |
Correct |
276 ms |
22716 KB |
Output is correct |
82 |
Correct |
426 ms |
36268 KB |
Output is correct |
83 |
Correct |
410 ms |
36268 KB |
Output is correct |
84 |
Correct |
375 ms |
35972 KB |
Output is correct |
85 |
Correct |
363 ms |
36092 KB |
Output is correct |
86 |
Correct |
150 ms |
12916 KB |
Output is correct |
87 |
Correct |
197 ms |
15968 KB |
Output is correct |
88 |
Correct |
300 ms |
18124 KB |
Output is correct |
89 |
Correct |
462 ms |
27380 KB |
Output is correct |