답안 #333447

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
333447 2020-12-06T00:46:35 Z rqi 조이터에서 친구를 만드는건 재밌어 (JOI20_joitter2) C++14
100 / 100
601 ms 61560 KB
#include <bits/stdc++.h>
using namespace std;
 
typedef long long ll;
typedef long double ld;
typedef double db; 
typedef string str; 

typedef pair<int,int> pi;
typedef pair<ll,ll> pl; 
typedef pair<db,db> pd; 

typedef vector<int> vi; 
typedef vector<bool> vb; 
typedef vector<ll> vl; 
typedef vector<db> vd; 
typedef vector<str> vs; 
typedef vector<pi> vpi;
typedef vector<pl> vpl; 
typedef vector<pd> vpd; 

#define mp make_pair
#define f first
#define s second
#define sz(x) (int)(x).size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend() 
#define sor(x) sort(all(x)) 
#define rsz resize
#define ins insert 
#define ft front() 
#define bk back()
#define pf push_front 
#define pb push_back
#define eb emplace_back 
#define lb lower_bound 
#define ub upper_bound 

#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)

const int MOD = 1e9+7; // 998244353;
const int MX = 2e5+5; 
const ll INF = 1e18; 
const ld PI = acos((ld)-1);
const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; 
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); 

template<class T> bool ckmin(T& a, const T& b) { 
    return b < a ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { 
    return a < b ? a = b, 1 : 0; } 
constexpr int pct(int x) { return __builtin_popcount(x); } 
constexpr int bits(int x) { return 31-__builtin_clz(x); } // floor(log2(x)) 
ll cdiv(ll a, ll b) { return a/b+((a^b)>0&&a%b); } // divide a by b rounded up
ll fdiv(ll a, ll b) { return a/b-((a^b)<0&&a%b); } // divide a by b rounded down
ll half(ll x) { return fdiv(x,2); }

template<class T, class U> T fstTrue(T lo, T hi, U f) { 
    // note: if (lo+hi)/2 is used instead of half(lo+hi) then this will loop infinitely when lo=hi
    hi ++; assert(lo <= hi); // assuming f is increasing
    while (lo < hi) { // find first index such that f is true 
        T mid = half(lo+hi);
        f(mid) ? hi = mid : lo = mid+1; 
    } 
    return lo;
}
template<class T, class U> T lstTrue(T lo, T hi, U f) {
    lo --; assert(lo <= hi); // assuming f is decreasing
    while (lo < hi) { // find first index such that f is true 
        T mid = half(lo+hi+1);
        f(mid) ? lo = mid : hi = mid-1;
    } 
    return lo;
}
template<class T> void remDup(vector<T>& v) { 
    sort(all(v)); v.erase(unique(all(v)),end(v)); }

// INPUT
template<class A> void re(complex<A>& c);
template<class A, class B> void re(pair<A,B>& p);
template<class A> void re(vector<A>& v);
template<class A, size_t SZ> void re(array<A,SZ>& a);

template<class T> void re(T& x) { cin >> x; }
void re(db& d) { str t; re(t); d = stod(t); }
void re(ld& d) { str t; re(t); d = stold(t); }
template<class H, class... T> void re(H& h, T&... t) { re(h); re(t...); }

template<class A> void re(complex<A>& c) { A a,b; re(a,b); c = {a,b}; }
template<class A, class B> void re(pair<A,B>& p) { re(p.f,p.s); }
template<class A> void re(vector<A>& x) { trav(a,x) re(a); }
template<class A, size_t SZ> void re(array<A,SZ>& x) { trav(a,x) re(a); }

// TO_STRING
#define ts to_string
str ts(char c) { return str(1,c); }
str ts(const char* s) { return (str)s; }
str ts(str s) { return s; }
str ts(bool b) { 
    #ifdef LOCAL
        return b ? "true" : "false"; 
    #else 
        return ts((int)b);
    #endif
}
template<class A> str ts(complex<A> c) { 
    stringstream ss; ss << c; return ss.str(); }
str ts(vector<bool> v) {
    str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]);
    res += "}"; return res; }
template<size_t SZ> str ts(bitset<SZ> b) {
    str res = ""; F0R(i,SZ) res += char('0'+b[i]);
    return res; }
template<class A, class B> str ts(pair<A,B> p);
template<class T> str ts(T v) { // containers with begin(), end()
    #ifdef LOCAL
        bool fst = 1; str res = "{";
        for (const auto& x: v) {
            if (!fst) res += ", ";
            fst = 0; res += ts(x);
        }
        res += "}"; return res;
    #else
        bool fst = 1; str res = "";
        for (const auto& x: v) {
            if (!fst) res += " ";
            fst = 0; res += ts(x);
        }
        return res;

    #endif
}
template<class A, class B> str ts(pair<A,B> p) {
    #ifdef LOCAL
        return "("+ts(p.f)+", "+ts(p.s)+")"; 
    #else
        return ts(p.f)+" "+ts(p.s);
    #endif
}

// OUTPUT
template<class A> void pr(A x) { cout << ts(x); }
template<class H, class... T> void pr(const H& h, const T&... t) { 
    pr(h); pr(t...); }
void ps() { pr("\n"); } // print w/ spaces
template<class H, class... T> void ps(const H& h, const T&... t) { 
    pr(h); if (sizeof...(t)) pr(" "); ps(t...); }

// DEBUG
void DBG() { cerr << "]" << endl; }
template<class H, class... T> void DBG(H h, T... t) {
    cerr << ts(h); if (sizeof...(t)) cerr << ", ";
    DBG(t...); }
#ifdef LOCAL // compile with -DLOCAL, chk -> fake assert
    #define dbg(...) cerr << "Line(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
    #define chk(...) if (!(__VA_ARGS__)) cerr << "Line(" << __LINE__ << ") -> function(" \
         << __FUNCTION__  << ") -> CHK FAILED: (" << #__VA_ARGS__ << ")" << "\n", exit(0);
#else
    #define dbg(...) 0
    #define chk(...) 0
#endif

// FILE I/O
void setIn(str s) { freopen(s.c_str(),"r",stdin); }
void setOut(str s) { freopen(s.c_str(),"w",stdout); }
void unsyncIO() { cin.tie(0)->sync_with_stdio(0); }
void setIO(str s = "") {
    unsyncIO();
    // cin.exceptions(cin.failbit); 
    // throws exception when do smth illegal
    // ex. try to read letter into int
    if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}

/**
 * Description: Hash map with the same API as unordered\_map, but \tilde 3x faster.
    * Initial capacity must be a power of 2 if provided.
 * Source: KACTL
 * Usage: ht<int,int> h({},{},{},{},{1<<16});
 */

#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
struct chash { /// use most bits rather than just the lowest ones
    const uint64_t C = ll(2e18*PI)+71; // large odd number
    const int RANDOM = rng();
    ll operator()(ll x) const { /// https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
        return __builtin_bswap64((x^RANDOM)*C); }
};
template<class K,class V> using um = unordered_map<K,V,chash>;
template<class K,class V> using ht = gp_hash_table<K,V,chash>;
template<class K,class V> V get(ht<K,V>& u, K x) {
    auto it = u.find(x); return it == end(u) ? 0 : it->s; }

template<class K,class V> void ERASE(ht<K,V>& u, K x) {
    if(u.find(x) != u.end()) u.erase(x); }

ll toll(int a, int b){
    return ll(100005)*ll(a)+ll(b);
}

const int mx = 100005;

int N, M;
int A[300005];
int B[300005];

ll ans;
int indeg[mx];
vpi elist;
vector<bool> inactive;
vi grpeds[mx]; //includes inactive edges
ht<ll, null_type> ntog;
ht<ll, null_type> gtog;

queue<pi> mergers;

/**
 * Description: Disjoint Set Union with path compression
    * and union by size. Add edges and test connectivity. 
    * Use for Kruskal's or Boruvka's minimum spanning tree.
 * Time: O(\alpha(N))
 * Source: CSAcademy, KACTL
 * Verification: *
 */

struct DSU {
    vi e; void init(int N) { e = vi(N,-1); }
    int get(int x) { return e[x] < 0 ? x : e[x] = get(e[x]); } 
    bool sameSet(int a, int b) { return get(a) == get(b); }
    int size(int x) { return -e[get(x)]; }

    void merge(int X, int Y){
        X = get(X);
        Y = get(Y);
        if(X == Y) return;
        if(sz(grpeds[Y]) > sz(grpeds[X])){
            swap(X, Y);
        }

        //dbg(X, Y);

        for(auto u: grpeds[Y]){
            if(inactive[u]) continue;
            if(get(elist[u].f) == X){
                ans-=size(Y);
                indeg[Y]--;
                inactive[u] = 1;
                //ntog.erase(toll(elist[u].f, elist[u].s));
                ERASE(ntog, toll(elist[u].f, elist[u].s));
            }
            else if(elist[u].s == X){
                ans-=size(X);
                indeg[X]--;
                inactive[u] = 1;
                //ntog.erase(toll(elist[u].f, elist[u].s));
                ERASE(ntog, toll(elist[u].f, elist[u].s));
            }
        }
        ERASE(gtog, toll(X, Y));
        ERASE(gtog, toll(Y, X));
        ans-=ll(size(X))*ll(size(X)-1);
        ans-=ll(size(Y))*ll(size(Y)-1);
        ans+=ll(size(X)+size(Y))*ll(size(X)+size(Y)-1);

        for(auto u: grpeds[Y]){
            if(inactive[u]) continue;
            if(get(elist[u].f) == Y){ //out edge
                grpeds[X].pb(u);
                ERASE(gtog, toll(Y, elist[u].s));
                gtog.ins(toll(X, elist[u].s));
            }
            else{ //in edge
                int a = elist[u].f;
                if(ntog.find(toll(a, X)) != ntog.end()){ //edge already exists
                     ans-=size(Y);
                     indeg[Y]--;
                     inactive[u] = 1;
                     //ntog.erase(toll(elist[u].f, elist[u].s));
                     ERASE(ntog, toll(elist[u].f, elist[u].s));
                     ERASE(gtog, toll(get(a), Y));
                }
                else{ //remove and add edge
                    ans-=size(Y);
                    ans+=size(X);
                    indeg[Y]--;
                    indeg[X]++;
                    elist[u].s = X;
                    grpeds[X].pb(u);
                    
                    //ntog.erase(toll(elist[u].f, Y));
                    ERASE(ntog, toll(elist[u].f, Y));

                    ntog.ins(toll(elist[u].f, X));
                    ERASE(gtog, toll(get(a), Y));
                    gtog.ins(toll(get(a), X));
                }
            }
        }

        ans+=ll(size(Y))*ll(indeg[X]);

        e[X] += e[Y]; e[Y] = X; 

        for(auto u: grpeds[Y]){
            if(inactive[u]) continue;
            int A = get(elist[u].f);
            int B = get(elist[u].s);
            assert(A != B);
            if(gtog.find(toll(A, B)) != gtog.end() && gtog.find(toll(B, A)) != gtog.end()){
                mergers.push(mp(A, B));
            }
        }
        grpeds[Y].clear();
    }

    bool unite(int x, int y) { // union by size
        int X = get(x);
        int Y = get(y); 
        if (X == Y) return 0;
        if(ntog.find(toll(x, Y)) != ntog.end()) return 0;
        if(gtog.find(toll(Y, X)) == gtog.end()){
            ans+=size(Y);
            indeg[Y]++;
            int eind = sz(elist);
            elist.pb(mp(x, Y));
            inactive.pb(0);
            grpeds[X].pb(eind); grpeds[Y].pb(eind);
            ntog.ins(toll(x, Y)); gtog.ins(toll(X, Y));
            return 1;
        }
        //MERGE
        mergers.push(mp(X, Y));
        return 1;
    }
};

/**template<class T> T kruskal(int N, vector<pair<T,pi>> ed) {
    sort(all(ed));
    T ans = 0; DSU D; D.init(N); // edges that unite are in MST
    trav(a,ed) if (D.unite(a.s.f,a.s.s)) ans += a.f; 
    return ans;
}*/

DSU dsu;

int main() {
    setIO();
    int N, M;
    cin >> N >> M;
    for(int i = 1; i <= M; i++){
        cin >> A[i] >> B[i];
    }
    dsu.init(N+5);
    for(int i = 1; i <= M; i++){
        dsu.unite(A[i], B[i]);
        while(sz(mergers)){
            pi a = mergers.front();
            mergers.pop();
            dsu.merge(a.f, a.s);
        }
        ps(ans);
    }
    // you should actually read the stuff at the bottom
}

/* stuff you should look for
    * int overflow, array bounds
    * special cases (n=1?)
    * do smth instead of nothing and stay organized
    * WRITE STUFF DOWN
*/

Compilation message

joitter2.cpp: In function 'void setIn(str)':
joitter2.cpp:168:28: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
  168 | void setIn(str s) { freopen(s.c_str(),"r",stdin); }
      |                     ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
joitter2.cpp: In function 'void setOut(str)':
joitter2.cpp:169:29: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
  169 | void setOut(str s) { freopen(s.c_str(),"w",stdout); }
      |                      ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 2668 KB Output is correct
2 Correct 2 ms 2668 KB Output is correct
3 Correct 2 ms 2668 KB Output is correct
4 Correct 2 ms 2668 KB Output is correct
5 Correct 2 ms 2668 KB Output is correct
6 Correct 2 ms 2668 KB Output is correct
7 Correct 3 ms 2796 KB Output is correct
8 Correct 3 ms 2796 KB Output is correct
9 Correct 3 ms 2796 KB Output is correct
10 Correct 2 ms 2668 KB Output is correct
11 Correct 2 ms 2668 KB Output is correct
12 Correct 2 ms 2668 KB Output is correct
13 Correct 2 ms 2668 KB Output is correct
14 Correct 2 ms 2668 KB Output is correct
15 Correct 2 ms 2668 KB Output is correct
16 Correct 2 ms 2668 KB Output is correct
17 Correct 2 ms 2668 KB Output is correct
18 Correct 2 ms 2668 KB Output is correct
19 Correct 2 ms 2668 KB Output is correct
20 Correct 3 ms 2668 KB Output is correct
21 Correct 3 ms 2796 KB Output is correct
22 Correct 2 ms 2668 KB Output is correct
23 Correct 3 ms 2812 KB Output is correct
24 Correct 2 ms 2796 KB Output is correct
25 Correct 3 ms 2816 KB Output is correct
26 Correct 2 ms 2668 KB Output is correct
27 Correct 2 ms 2668 KB Output is correct
28 Correct 2 ms 2668 KB Output is correct
29 Correct 2 ms 2668 KB Output is correct
30 Correct 2 ms 2668 KB Output is correct
31 Correct 3 ms 2796 KB Output is correct
32 Correct 2 ms 2668 KB Output is correct
33 Correct 3 ms 2796 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 2668 KB Output is correct
2 Correct 2 ms 2668 KB Output is correct
3 Correct 2 ms 2668 KB Output is correct
4 Correct 2 ms 2668 KB Output is correct
5 Correct 2 ms 2668 KB Output is correct
6 Correct 2 ms 2668 KB Output is correct
7 Correct 3 ms 2796 KB Output is correct
8 Correct 3 ms 2796 KB Output is correct
9 Correct 3 ms 2796 KB Output is correct
10 Correct 2 ms 2668 KB Output is correct
11 Correct 2 ms 2668 KB Output is correct
12 Correct 2 ms 2668 KB Output is correct
13 Correct 2 ms 2668 KB Output is correct
14 Correct 2 ms 2668 KB Output is correct
15 Correct 2 ms 2668 KB Output is correct
16 Correct 2 ms 2668 KB Output is correct
17 Correct 2 ms 2668 KB Output is correct
18 Correct 2 ms 2668 KB Output is correct
19 Correct 2 ms 2668 KB Output is correct
20 Correct 3 ms 2668 KB Output is correct
21 Correct 3 ms 2796 KB Output is correct
22 Correct 2 ms 2668 KB Output is correct
23 Correct 3 ms 2812 KB Output is correct
24 Correct 2 ms 2796 KB Output is correct
25 Correct 3 ms 2816 KB Output is correct
26 Correct 2 ms 2668 KB Output is correct
27 Correct 2 ms 2668 KB Output is correct
28 Correct 2 ms 2668 KB Output is correct
29 Correct 2 ms 2668 KB Output is correct
30 Correct 2 ms 2668 KB Output is correct
31 Correct 3 ms 2796 KB Output is correct
32 Correct 2 ms 2668 KB Output is correct
33 Correct 3 ms 2796 KB Output is correct
34 Correct 6 ms 2924 KB Output is correct
35 Correct 124 ms 10376 KB Output is correct
36 Correct 140 ms 11692 KB Output is correct
37 Correct 140 ms 11780 KB Output is correct
38 Correct 138 ms 12072 KB Output is correct
39 Correct 5 ms 2924 KB Output is correct
40 Correct 6 ms 3052 KB Output is correct
41 Correct 6 ms 3052 KB Output is correct
42 Correct 5 ms 2924 KB Output is correct
43 Correct 5 ms 3052 KB Output is correct
44 Correct 5 ms 3052 KB Output is correct
45 Correct 5 ms 2924 KB Output is correct
46 Correct 5 ms 2924 KB Output is correct
47 Correct 5 ms 3052 KB Output is correct
48 Correct 5 ms 3052 KB Output is correct
49 Correct 11 ms 3876 KB Output is correct
50 Correct 140 ms 11656 KB Output is correct
51 Correct 9 ms 3436 KB Output is correct
52 Correct 132 ms 11276 KB Output is correct
53 Correct 10 ms 3892 KB Output is correct
54 Correct 138 ms 12036 KB Output is correct
55 Correct 6 ms 3308 KB Output is correct
56 Correct 6 ms 3308 KB Output is correct
57 Correct 6 ms 3308 KB Output is correct
58 Correct 6 ms 3308 KB Output is correct
59 Correct 5 ms 2924 KB Output is correct
60 Correct 126 ms 10220 KB Output is correct
61 Correct 6 ms 3180 KB Output is correct
62 Correct 142 ms 12036 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 2668 KB Output is correct
2 Correct 2 ms 2668 KB Output is correct
3 Correct 2 ms 2668 KB Output is correct
4 Correct 2 ms 2668 KB Output is correct
5 Correct 2 ms 2668 KB Output is correct
6 Correct 2 ms 2668 KB Output is correct
7 Correct 3 ms 2796 KB Output is correct
8 Correct 3 ms 2796 KB Output is correct
9 Correct 3 ms 2796 KB Output is correct
10 Correct 2 ms 2668 KB Output is correct
11 Correct 2 ms 2668 KB Output is correct
12 Correct 2 ms 2668 KB Output is correct
13 Correct 2 ms 2668 KB Output is correct
14 Correct 2 ms 2668 KB Output is correct
15 Correct 2 ms 2668 KB Output is correct
16 Correct 2 ms 2668 KB Output is correct
17 Correct 2 ms 2668 KB Output is correct
18 Correct 2 ms 2668 KB Output is correct
19 Correct 2 ms 2668 KB Output is correct
20 Correct 3 ms 2668 KB Output is correct
21 Correct 3 ms 2796 KB Output is correct
22 Correct 2 ms 2668 KB Output is correct
23 Correct 3 ms 2812 KB Output is correct
24 Correct 2 ms 2796 KB Output is correct
25 Correct 3 ms 2816 KB Output is correct
26 Correct 2 ms 2668 KB Output is correct
27 Correct 2 ms 2668 KB Output is correct
28 Correct 2 ms 2668 KB Output is correct
29 Correct 2 ms 2668 KB Output is correct
30 Correct 2 ms 2668 KB Output is correct
31 Correct 3 ms 2796 KB Output is correct
32 Correct 2 ms 2668 KB Output is correct
33 Correct 3 ms 2796 KB Output is correct
34 Correct 6 ms 2924 KB Output is correct
35 Correct 124 ms 10376 KB Output is correct
36 Correct 140 ms 11692 KB Output is correct
37 Correct 140 ms 11780 KB Output is correct
38 Correct 138 ms 12072 KB Output is correct
39 Correct 5 ms 2924 KB Output is correct
40 Correct 6 ms 3052 KB Output is correct
41 Correct 6 ms 3052 KB Output is correct
42 Correct 5 ms 2924 KB Output is correct
43 Correct 5 ms 3052 KB Output is correct
44 Correct 5 ms 3052 KB Output is correct
45 Correct 5 ms 2924 KB Output is correct
46 Correct 5 ms 2924 KB Output is correct
47 Correct 5 ms 3052 KB Output is correct
48 Correct 5 ms 3052 KB Output is correct
49 Correct 11 ms 3876 KB Output is correct
50 Correct 140 ms 11656 KB Output is correct
51 Correct 9 ms 3436 KB Output is correct
52 Correct 132 ms 11276 KB Output is correct
53 Correct 10 ms 3892 KB Output is correct
54 Correct 138 ms 12036 KB Output is correct
55 Correct 6 ms 3308 KB Output is correct
56 Correct 6 ms 3308 KB Output is correct
57 Correct 6 ms 3308 KB Output is correct
58 Correct 6 ms 3308 KB Output is correct
59 Correct 5 ms 2924 KB Output is correct
60 Correct 126 ms 10220 KB Output is correct
61 Correct 6 ms 3180 KB Output is correct
62 Correct 142 ms 12036 KB Output is correct
63 Correct 400 ms 61428 KB Output is correct
64 Correct 387 ms 61428 KB Output is correct
65 Correct 401 ms 61560 KB Output is correct
66 Correct 152 ms 13792 KB Output is correct
67 Correct 282 ms 18124 KB Output is correct
68 Correct 144 ms 13920 KB Output is correct
69 Correct 218 ms 18764 KB Output is correct
70 Correct 151 ms 13792 KB Output is correct
71 Correct 145 ms 13792 KB Output is correct
72 Correct 271 ms 18124 KB Output is correct
73 Correct 272 ms 18124 KB Output is correct
74 Correct 601 ms 29944 KB Output is correct
75 Correct 332 ms 27580 KB Output is correct
76 Correct 445 ms 27452 KB Output is correct
77 Correct 471 ms 27500 KB Output is correct
78 Correct 155 ms 17272 KB Output is correct
79 Correct 295 ms 23040 KB Output is correct
80 Correct 153 ms 17272 KB Output is correct
81 Correct 276 ms 22716 KB Output is correct
82 Correct 426 ms 36268 KB Output is correct
83 Correct 410 ms 36268 KB Output is correct
84 Correct 375 ms 35972 KB Output is correct
85 Correct 363 ms 36092 KB Output is correct
86 Correct 150 ms 12916 KB Output is correct
87 Correct 197 ms 15968 KB Output is correct
88 Correct 300 ms 18124 KB Output is correct
89 Correct 462 ms 27380 KB Output is correct