Submission #305855

#TimeUsernameProblemLanguageResultExecution timeMemory
305855llakiPacking Biscuits (IOI20_biscuits)Java
0 / 100
1020 ms11036 KiB
public class biscuits { long count_tastiness(long x, long[] a) { if (x == 1) { return solveXIsOne(a); } return countNaive(x, a); } // How many diff. sums can we get by (n[i] * 2^i, where 0 <= n[i] <= a[i]). long solveXIsOne(long[] a) { return recursiveXIsOne(0, 0, a); } long recursiveXIsOne(int pos, long first, long[] a) { if (pos == a.length - 1) { return first + 1; } long res = recursiveXIsOne(pos + 1, a[pos + 1] + first / 2, a); if (first > 0) { res += recursiveXIsOne(pos + 1, a[pos + 1] + (first - 1) / 2, a); } return res; } long countNaive(long x, long[] a) { return countRec(x, a, 0); } long countRec(long x, long[] a, int index) { if (index == a.length - 1) { return a[a.length - 1] / x + 1; } long temp = a[index + 1]; a[index + 1] = a[index + 1] + a[index] / 2; long answer = countRec(x, a, index + 1); if (a[index] >= x) { a[index + 1] = temp + (a[index] - x) / 2; answer += countRec(x, a, index + 1); a[index + 1] = temp; } a[index + 1] = temp; return answer; } } // (s[k-1] - i * X) / (2^(k-1)), 0 <= i < 2^(k - 1). // For which i is this state valid? // If for each position b s.t. b-th bit is set in i, (s[b+1] - (2^b + prev(i,b))X) / 2^(b+1) >= X.
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...