#include<cstdio>
#include<algorithm>
#include<cassert>
#include<set>
#define N_ 251000
#define SZ 262144
#include <vector>
using namespace std;
int n, K, Rank[N_], w[N_], V[N_];
struct Tree {
int K[SZ + SZ], Mn[SZ + SZ];
void UDT(int nd) {
Mn[nd] = min(Mn[nd * 2], Mn[nd * 2 + 1]);
}
void init(int nd, int b, int e) {
K[nd] = 0;
if (b == e) {
Mn[nd] = Rank[b] - 1;
return;
}
int m = (b + e) >> 1;
init(nd * 2, b, m);
init(nd * 2 + 1, m + 1, e);
UDT(nd);
}
void Add2(int nd, int x) {
K[nd] += x;
Mn[nd] += x;
}
void Spread(int nd) {
Add2(nd * 2, K[nd]);
Add2(nd * 2 + 1, K[nd]);
K[nd] = 0;
}
void Add(int nd, int b, int e, int s, int l, int x) {
if (s > l)return;
if (s <= b && e <= l) {
Add2(nd, x);
return;
}
Spread(nd);
int m = (b + e) >> 1;
if (s <= m)Add(nd * 2, b, m, s, l, x);
if (l > m)Add(nd * 2 + 1, m + 1, e, s, l, x);
UDT(nd);
}
void Put(int nd, int b, int e, int x, int y) {
if (b == e) {
Mn[nd] = y;
return;
}
Spread(nd);
int m = (b + e) >> 1;
if (x <= m)Put(nd * 2, b, m, x, y);
else Put(nd * 2 + 1, m + 1, e, x, y);
UDT(nd);
}
int FZ(int nd, int b, int e) {
if (b == e)return b;
Spread(nd);
int m = (b + e) >> 1;
if (!Mn[nd * 2])return FZ(nd * 2, b, m);
return FZ(nd * 2 + 1, m + 1, e);
}
int FindZero() {
if (Mn[1])return 0;
return FZ(1, 1, n);
}
}IT;
set<int>Set, Good;
void Ins(int a) {
Set.insert(a);
auto it = Set.find(a);
int nxt, prv;
if (next(it) != Set.end())nxt = *(next(it));
else nxt = (*Set.begin()) + n;
if (it != Set.begin())prv = *(prev(it));
else prv = (*prev(Set.end())) - n;
if (nxt - a >= K) {
int t = (nxt - 1) % n + 1;
Good.insert(t);
}
else {
int t = (nxt - 1) % n + 1;
if (Good.find(t) != Good.end()) Good.erase(t);
}
if (a - prv >= K) {
Good.insert(a);
}
}
void Del(int a) {
auto it = Set.find(a);
int nxt, prv;
if (next(it) != Set.end())nxt = *(next(it));
else nxt = (*Set.begin()) + n;
if (it != Set.begin())prv = *(prev(it));
else prv = (*prev(Set.end())) - n;
Set.erase(a);
if (Good.find(a) != Good.end())Good.erase(a);
if (!Set.empty() && nxt - prv >= K) {
Good.insert((nxt - 1) % n + 1);
}
}
int BIT[N_];
void Add(int a, int b) {
while (a < N_) {
BIT[a] += b;
a += (a&-a);
}
}
int Sum(int a) {
int r = 0;
while (a) {
r += BIT[a];
a -= (a&-a);
}
return r;
}
long long Right[N_][20], Left[N_][20], INF = 1e9;
bool RightPath(int a, int b) {
int d = (b - a + n) % n;
int i;
for (i = 17; i >= 0; i--) {
if (d >= Right[a][i]) {
d -= Right[a][i];
a = (a + Right[a][i] - 1) % n + 1;
}
}
if ((b - a + n) % n < K && V[a] <= V[b])return true;
return false;
}
bool LeftPath(int a, int b) {
int d = (a - b + n) % n;
int i;
for (i = 17; i >= 0; i--) {
if (d >= Left[a][i]) {
d -= Left[a][i];
a = (a - Left[a][i] - 1 + n) % n + 1;
}
}
if ((a - b + n) % n < K && V[a] <= V[b])return true;
return false;
}
bool Path(int a, int b) {
return RightPath(a, b) || LeftPath(a, b);
}
int compare_plants(int a, int b) {
a++;
b++;
if (Path(a, b)) return 1;
else if (Path(b, a)) return -1;
else return 0;
}
void Do() {
int i, j;
for (i = 0; i < N_; i++)BIT[i] = 0;
for (i = 1; i <= K; i++) {
Add(V[i], 1);
}
for (i = 1; i <= n; i++) {
int b = V[i] + 1, e = n, mid, r = 0, s = Sum(V[i]);
while (b <= e) {
mid = (b + e) >> 1;
if (Sum(mid) > s) {
r = mid;
e = mid - 1;
}
else b = mid + 1;
}
if (r) {
r = w[r];
Right[i][0] = (r - i + n) % n;
}
else Right[i][0] = INF;
Add(V[i], -1);
Add(V[(i + K - 1) % n + 1], 1);
}
for (i = 0; i < N_; i++)BIT[i] = 0;
for (i = n; i > n - K; i--) {
Add(V[i], 1);
}
for (i = n; i >= 1; i--) {
int b = V[i] + 1, e = n, mid, r = 0, s = Sum(V[i]);
while (b <= e) {
mid = (b + e) >> 1;
if (Sum(mid) > s) {
r = mid;
e = mid - 1;
}
else b = mid + 1;
}
if (r) {
r = w[r];
Left[i][0] = (i - r + n) % n;
}
else Left[i][0] = INF;
Add(V[i], -1);
Add(V[(i - K + n - 1) % n + 1], 1);
}
for (i = 0; i < 18; i++) {
for (j = 1; j <= n; j++) {
if (Right[j][i] >= INF) {
Right[j][i + 1] = INF;
}
else {
int t = (j + Right[j][i] - 1) % n + 1;
Right[j][i + 1] = min(INF, Right[t][i] + Right[j][i]);
}
if (Left[j][i] >= INF) {
Left[j][i + 1] = INF;
}
else {
int t = (j - Left[j][i] % n - 1 + n) % n + 1;
Left[j][i + 1] = min(INF, Left[t][i] + Left[j][i]);
}
}
}
}
void init(int k, vector<int> r) {
n = r.size();
K = k;
int i;
for(i=0; i<n; i++) {
Rank[i+1] = r[i]+1;
}
IT.init(1, 1, n);
for (i = 1; i <= n; i++) {
int t;
while ((t = IT.FindZero())) {
Ins(t);
IT.Put(1, 1, n, t, INF);
}
assert(!Good.empty());
int a = *Good.begin();
w[i] = a;
V[a] = i;
IT.Add(1, 1, n, max(a - K + 1, 1), a - 1, -1);
IT.Add(1, 1, n, a - K + 1 + n, min(a - 1 + n, n), -1);
Del(a);
}
for (i = 1; i <= K; i++) Add(V[i], 1);
for (i = 1; i <= n; i++) {
assert(Sum(V[i]) == Rank[i]);
Add(V[i], -1);
Add(V[(i + K - 1) % n + 1], 1);
}
Do();
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
1280 KB |
Output is correct |
2 |
Correct |
1 ms |
1280 KB |
Output is correct |
3 |
Correct |
1 ms |
1280 KB |
Output is correct |
4 |
Correct |
1 ms |
1280 KB |
Output is correct |
5 |
Correct |
1 ms |
1280 KB |
Output is correct |
6 |
Correct |
98 ms |
4216 KB |
Output is correct |
7 |
Correct |
207 ms |
11404 KB |
Output is correct |
8 |
Correct |
684 ms |
79480 KB |
Output is correct |
9 |
Correct |
733 ms |
78840 KB |
Output is correct |
10 |
Correct |
784 ms |
78968 KB |
Output is correct |
11 |
Correct |
826 ms |
79736 KB |
Output is correct |
12 |
Correct |
840 ms |
79352 KB |
Output is correct |
13 |
Correct |
816 ms |
83832 KB |
Output is correct |
14 |
Correct |
902 ms |
74552 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
1280 KB |
Output is correct |
2 |
Correct |
1 ms |
1280 KB |
Output is correct |
3 |
Correct |
1 ms |
1280 KB |
Output is correct |
4 |
Correct |
1 ms |
1280 KB |
Output is correct |
5 |
Correct |
2 ms |
1408 KB |
Output is correct |
6 |
Correct |
5 ms |
1792 KB |
Output is correct |
7 |
Correct |
106 ms |
6008 KB |
Output is correct |
8 |
Correct |
4 ms |
1408 KB |
Output is correct |
9 |
Correct |
5 ms |
1792 KB |
Output is correct |
10 |
Correct |
104 ms |
6008 KB |
Output is correct |
11 |
Correct |
125 ms |
6008 KB |
Output is correct |
12 |
Correct |
155 ms |
6136 KB |
Output is correct |
13 |
Correct |
107 ms |
6008 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
1280 KB |
Output is correct |
2 |
Correct |
1 ms |
1280 KB |
Output is correct |
3 |
Correct |
1 ms |
1280 KB |
Output is correct |
4 |
Correct |
1 ms |
1280 KB |
Output is correct |
5 |
Correct |
2 ms |
1408 KB |
Output is correct |
6 |
Correct |
5 ms |
1792 KB |
Output is correct |
7 |
Correct |
106 ms |
6008 KB |
Output is correct |
8 |
Correct |
4 ms |
1408 KB |
Output is correct |
9 |
Correct |
5 ms |
1792 KB |
Output is correct |
10 |
Correct |
104 ms |
6008 KB |
Output is correct |
11 |
Correct |
125 ms |
6008 KB |
Output is correct |
12 |
Correct |
155 ms |
6136 KB |
Output is correct |
13 |
Correct |
107 ms |
6008 KB |
Output is correct |
14 |
Correct |
175 ms |
11424 KB |
Output is correct |
15 |
Correct |
963 ms |
74488 KB |
Output is correct |
16 |
Correct |
180 ms |
11384 KB |
Output is correct |
17 |
Correct |
971 ms |
74300 KB |
Output is correct |
18 |
Correct |
911 ms |
78964 KB |
Output is correct |
19 |
Correct |
954 ms |
74360 KB |
Output is correct |
20 |
Correct |
857 ms |
74360 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
1280 KB |
Output is correct |
2 |
Correct |
1 ms |
1280 KB |
Output is correct |
3 |
Correct |
123 ms |
4856 KB |
Output is correct |
4 |
Correct |
938 ms |
77688 KB |
Output is correct |
5 |
Correct |
918 ms |
75256 KB |
Output is correct |
6 |
Correct |
1000 ms |
74424 KB |
Output is correct |
7 |
Correct |
946 ms |
74360 KB |
Output is correct |
8 |
Correct |
904 ms |
74488 KB |
Output is correct |
9 |
Correct |
830 ms |
76664 KB |
Output is correct |
10 |
Correct |
938 ms |
75256 KB |
Output is correct |
11 |
Correct |
812 ms |
83704 KB |
Output is correct |
12 |
Correct |
926 ms |
74360 KB |
Output is correct |
13 |
Correct |
886 ms |
80888 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
1280 KB |
Output is correct |
2 |
Correct |
1 ms |
1280 KB |
Output is correct |
3 |
Correct |
1 ms |
1280 KB |
Output is correct |
4 |
Correct |
1 ms |
1280 KB |
Output is correct |
5 |
Correct |
1 ms |
1280 KB |
Output is correct |
6 |
Correct |
4 ms |
1408 KB |
Output is correct |
7 |
Correct |
26 ms |
2048 KB |
Output is correct |
8 |
Correct |
21 ms |
2048 KB |
Output is correct |
9 |
Correct |
27 ms |
2048 KB |
Output is correct |
10 |
Correct |
22 ms |
2048 KB |
Output is correct |
11 |
Correct |
27 ms |
2040 KB |
Output is correct |
12 |
Correct |
26 ms |
2040 KB |
Output is correct |
13 |
Correct |
21 ms |
2040 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
1280 KB |
Output is correct |
2 |
Correct |
1 ms |
1280 KB |
Output is correct |
3 |
Correct |
1 ms |
1312 KB |
Output is correct |
4 |
Correct |
1 ms |
1280 KB |
Output is correct |
5 |
Correct |
3 ms |
1664 KB |
Output is correct |
6 |
Correct |
786 ms |
74652 KB |
Output is correct |
7 |
Correct |
817 ms |
74488 KB |
Output is correct |
8 |
Correct |
778 ms |
74556 KB |
Output is correct |
9 |
Correct |
951 ms |
74448 KB |
Output is correct |
10 |
Correct |
803 ms |
76720 KB |
Output is correct |
11 |
Correct |
895 ms |
74720 KB |
Output is correct |
12 |
Correct |
818 ms |
77432 KB |
Output is correct |
13 |
Correct |
837 ms |
75000 KB |
Output is correct |
14 |
Correct |
785 ms |
74348 KB |
Output is correct |
15 |
Correct |
867 ms |
74360 KB |
Output is correct |
16 |
Correct |
830 ms |
75896 KB |
Output is correct |
17 |
Correct |
757 ms |
74488 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
1280 KB |
Output is correct |
2 |
Correct |
1 ms |
1280 KB |
Output is correct |
3 |
Correct |
1 ms |
1280 KB |
Output is correct |
4 |
Correct |
1 ms |
1280 KB |
Output is correct |
5 |
Correct |
1 ms |
1280 KB |
Output is correct |
6 |
Correct |
98 ms |
4216 KB |
Output is correct |
7 |
Correct |
207 ms |
11404 KB |
Output is correct |
8 |
Correct |
684 ms |
79480 KB |
Output is correct |
9 |
Correct |
733 ms |
78840 KB |
Output is correct |
10 |
Correct |
784 ms |
78968 KB |
Output is correct |
11 |
Correct |
826 ms |
79736 KB |
Output is correct |
12 |
Correct |
840 ms |
79352 KB |
Output is correct |
13 |
Correct |
816 ms |
83832 KB |
Output is correct |
14 |
Correct |
902 ms |
74552 KB |
Output is correct |
15 |
Correct |
1 ms |
1280 KB |
Output is correct |
16 |
Correct |
1 ms |
1280 KB |
Output is correct |
17 |
Correct |
1 ms |
1280 KB |
Output is correct |
18 |
Correct |
1 ms |
1280 KB |
Output is correct |
19 |
Correct |
2 ms |
1408 KB |
Output is correct |
20 |
Correct |
5 ms |
1792 KB |
Output is correct |
21 |
Correct |
106 ms |
6008 KB |
Output is correct |
22 |
Correct |
4 ms |
1408 KB |
Output is correct |
23 |
Correct |
5 ms |
1792 KB |
Output is correct |
24 |
Correct |
104 ms |
6008 KB |
Output is correct |
25 |
Correct |
125 ms |
6008 KB |
Output is correct |
26 |
Correct |
155 ms |
6136 KB |
Output is correct |
27 |
Correct |
107 ms |
6008 KB |
Output is correct |
28 |
Correct |
175 ms |
11424 KB |
Output is correct |
29 |
Correct |
963 ms |
74488 KB |
Output is correct |
30 |
Correct |
180 ms |
11384 KB |
Output is correct |
31 |
Correct |
971 ms |
74300 KB |
Output is correct |
32 |
Correct |
911 ms |
78964 KB |
Output is correct |
33 |
Correct |
954 ms |
74360 KB |
Output is correct |
34 |
Correct |
857 ms |
74360 KB |
Output is correct |
35 |
Correct |
2 ms |
1280 KB |
Output is correct |
36 |
Correct |
1 ms |
1280 KB |
Output is correct |
37 |
Correct |
123 ms |
4856 KB |
Output is correct |
38 |
Correct |
938 ms |
77688 KB |
Output is correct |
39 |
Correct |
918 ms |
75256 KB |
Output is correct |
40 |
Correct |
1000 ms |
74424 KB |
Output is correct |
41 |
Correct |
946 ms |
74360 KB |
Output is correct |
42 |
Correct |
904 ms |
74488 KB |
Output is correct |
43 |
Correct |
830 ms |
76664 KB |
Output is correct |
44 |
Correct |
938 ms |
75256 KB |
Output is correct |
45 |
Correct |
812 ms |
83704 KB |
Output is correct |
46 |
Correct |
926 ms |
74360 KB |
Output is correct |
47 |
Correct |
886 ms |
80888 KB |
Output is correct |
48 |
Correct |
1 ms |
1280 KB |
Output is correct |
49 |
Correct |
1 ms |
1280 KB |
Output is correct |
50 |
Correct |
1 ms |
1280 KB |
Output is correct |
51 |
Correct |
1 ms |
1280 KB |
Output is correct |
52 |
Correct |
1 ms |
1280 KB |
Output is correct |
53 |
Correct |
4 ms |
1408 KB |
Output is correct |
54 |
Correct |
26 ms |
2048 KB |
Output is correct |
55 |
Correct |
21 ms |
2048 KB |
Output is correct |
56 |
Correct |
27 ms |
2048 KB |
Output is correct |
57 |
Correct |
22 ms |
2048 KB |
Output is correct |
58 |
Correct |
27 ms |
2040 KB |
Output is correct |
59 |
Correct |
26 ms |
2040 KB |
Output is correct |
60 |
Correct |
21 ms |
2040 KB |
Output is correct |
61 |
Correct |
131 ms |
4836 KB |
Output is correct |
62 |
Correct |
233 ms |
11400 KB |
Output is correct |
63 |
Correct |
798 ms |
75768 KB |
Output is correct |
64 |
Correct |
902 ms |
74616 KB |
Output is correct |
65 |
Correct |
953 ms |
74360 KB |
Output is correct |
66 |
Correct |
931 ms |
74616 KB |
Output is correct |
67 |
Correct |
928 ms |
74360 KB |
Output is correct |
68 |
Correct |
913 ms |
76664 KB |
Output is correct |
69 |
Correct |
1048 ms |
74876 KB |
Output is correct |
70 |
Correct |
964 ms |
77564 KB |
Output is correct |
71 |
Correct |
1061 ms |
75000 KB |
Output is correct |
72 |
Correct |
1004 ms |
74360 KB |
Output is correct |
73 |
Correct |
964 ms |
74360 KB |
Output is correct |
74 |
Correct |
809 ms |
75380 KB |
Output is correct |
75 |
Correct |
845 ms |
74488 KB |
Output is correct |