Submission #270588

# Submission time Handle Problem Language Result Execution time Memory
270588 2020-08-17T18:59:21 Z limabeans Bubble Sort 2 (JOI18_bubblesort2) C++17
100 / 100
7405 ms 218908 KB
#include "bubblesort2.h"
#include <bits/stdc++.h>
using namespace std;

template<typename T>
void out(T x) { cout << x << endl; exit(0); }
#define watch(x) cout << (#x) << " is " << (x) << endl


#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
//*find_by_order: iterator to kth elem (0-indexed)
//order_of_key: # of items < k (stictly less)


using ll = long long;

const ll mod = 1e9+7;
const int maxn = 1e6 + 5;
const ll inf = 1e18;

struct MaxLazySegmentTree {
    vector<ll> t, o;
    void init(int n) {
	n += 10;
	t.resize(4*n);
	o.resize(4*n);
    }
    
    void push(int v) {
	t[2*v]+=o[v];
	t[2*v+1]+=o[v];
	o[2*v]+=o[v];
	o[2*v+1]+=o[v];
	o[v]=0;
    }

    ll queryMax(int v, int tl, int tr, int l, int r) {
	if (l>tr||r<tl) return -inf;
	if (l<=tl&&tr<=r) {
	    return t[v];
	} else {
	    push(v);
	    int tm=(tl+tr)/2;
	    return max(queryMax(2*v,tl,tm,l,r),queryMax(2*v+1,tm+1,tr,l,r));
	}
    }

    void rangeAdd(int v, int tl, int tr, int l, int r, ll dx) {
	if (l>r) return;
	if (l>tr||r<tl) return;
	if (l<=tl&&tr<=r) {
	    t[v]+=dx;
	    o[v]+=dx;
	} else {
	    push(v);
	    int tm=(tl+tr)/2;
	    rangeAdd(2*v,tl,tm,l,r,dx);
	    rangeAdd(2*v+1,tm+1,tr,l,r,dx);
	    t[v]=max(t[2*v],t[2*v+1]);
	}
    }
};


template<typename T> struct bit1 {
    T add(T x, T y) {
	return x+y;
    }
    int n;
    vector<T> t;
    void init(int n) {
	this->n=n;
	t.resize(n+10);
    }
    T qry(int i) {
	assert(i>=1 && i<=n);
	T res=0;
	for (; i>0; i-=i&-i) res=add(res,t[i]);
	return res;
    }
    void upd(int i, T dx) {
	assert(i>=1 && i<=n);
	for (; i<=n; i+=i&-i) t[i]=add(t[i],dx);
    }
};



bool sorted(vector<int> a) {
    int n = a.size();
    for (int i=1; i<n; i++) {
	if (a[i] < a[i-1]) return false;
    }
    return true;
}

int brute(vector<int> a) {
    int n = a.size();
    int res = 0;
    while (!sorted(a)) {
	res++;
	for (int i=0; i<n-1; i++) {
	    if (a[i] > a[i+1]) swap(a[i], a[i+1]);
	}
    }
    return res;
}

int solve(vector<int> a) {
    vector<int> sa = a;
    int n = a.size();
    sort(sa.begin(), sa.end());
    map<int,vector<int>> inds;
    for (int i=n-1; i>=0; i--) {
	inds[sa[i]].push_back(i);
    }
    int mx = 0;

    for (int i=0; i<n; i++) {
	int to = inds[a[i]].back();
	if (to < i) {
	    mx = max(mx, i-to);
	}
	inds[a[i]].pop_back();
    }

    return mx;
}

int solveInversion(vector<int> a) {
    map<int,int> ind;
    ordered_set<pair<int,int>> os;
    int hi = 0;
    
    for (int x: a) {
	pair<int,int> cur = {x, ind[x]++};
	int lte = os.order_of_key(cur);
	int inv = int(os.size()) - lte;
	hi = max(hi, inv);
	os.insert(cur);
    }

    return hi;
}


void print(vector<int> a) {
    for (int i: a) cout<<i<<" ";
    cout<<endl;
}



vector<int> solveTask3(vector<int> A, vector<int> X, vector<int> V) {
    //cerr<<"task3"<<endl;
    
    int n = A.size();
    vector<set<int>> inds(102);
    for (int i=0; i<n; i++) {
	inds[A[i]].insert(i);
    }

    vector<int> ans;

    for (int q=0; q<(int)X.size(); q++) {
	int idx = X[q];
	int val = V[q];
	inds[A[idx]].erase(idx);
	A[idx] = val;
	inds[A[idx]].insert(idx);

	int mx = 0;
	int prev = 0;
	for (int i=1; i<=100; i++) {
	    if (inds[i].empty()) {
		continue;
	    }
	    int dest = prev + int(inds[i].size()) - 1;
	    int dist = *inds[i].rbegin() - dest;
	    mx = max(mx, dist);
	    prev += int(inds[i].size());
	}
	//assert(mx == brute(A));
	ans.push_back(mx);
    }

    return ans;
}



vector<int> countScans(vector<int> A, vector<int> X, vector<int> V){
    // if (max(*max_element(A.begin(),A.end()), *max_element(V.begin(),V.end())) <= 100) {
    // 	return solveTask3(A,X,V);
    // }
    int n = A.size();
    MaxLazySegmentTree tree; //queryMax, rangeAdd
    bit1<ll> bit;
    vector<int> ord;
    ord.push_back(-1);
    ord.push_back(0);
    for (auto x: A) ord.push_back(x);
    for (auto x: V) ord.push_back(x);
    ord.push_back(1000000001);
    sort(ord.begin(), ord.end());
    ord.erase(unique(ord.begin(), ord.end()), ord.end());
    int N = ord.size();
    tree.init(N);
    bit.init(N);

    map<int,set<int>> inds;
    for (int i=0; i<n; i++) {
	inds[A[i]].insert(i);
	int id = lower_bound(ord.begin(), ord.end(), A[i]) - ord.begin();
	bit.upd(id, +1);
    }
    for (auto p: inds) {
	int val = p.first;
	int rightmost = *p.second.rbegin();
	int id = lower_bound(ord.begin(), ord.end(), val) - ord.begin();
	tree.rangeAdd(1,1,N,id,id,+rightmost);
	int rnk = bit.qry(id-1) + int(p.second.size()) - 1;
	tree.rangeAdd(1,1,N,id,id,-rnk);
    }

    // watch(tree.queryMax(1,1,N,1,N));
    // watch(brute(A));
    // assert(tree.queryMax(1,1,N,1,N) == brute(A));
    // for (int j=1; j<=N; j++) {
    // 	if (inds[ord[j]].empty()) {
    // 	    assert(tree.queryMax(1,1,N,j,j)<=0);
    // 	}
    // }
    // for (int j=1; j<=N; j++) {
    // 	cout<<tree.queryMax(1,1,N,j,j)<<" ";
    // }
    // cout<<endl;


    auto clean = [&](int id) {
	ll val = tree.queryMax(1,1,N,id,id);
	tree.rangeAdd(1,1,N,id,id,-val);
    };


    // rightmost - rank
    // rank: | <me | + (| =me | - 1)


    // auto getRank = [&](int val) {
    // 	assert(inds[val].size());
    // 	int id = lower_bound(ord.begin(), ord.end(), val) - ord.begin();
    // 	return bit.qry(id-1) + int(inds[val].size()) - 1;
    // };

    int Q = X.size();
    vector<int> res(Q);
    for (int i=0; i<Q; i++) {
	int idx = X[i];
	// remove
	{
	    int id = lower_bound(ord.begin(), ord.end(), A[idx]) - ord.begin();
	    if ((int)inds[A[idx]].size() > 1) tree.rangeAdd(1,1,N,id,id,+1);
	    tree.rangeAdd(1,1,N,id+1,N,+1);
	    
	    if (idx == *inds[A[idx]].rbegin()) {
		tree.rangeAdd(1,1,N,id,id,-(*inds[A[idx]].rbegin()));
		inds[A[idx]].erase(idx);
		if (!inds[A[idx]].empty()) {
		    tree.rangeAdd(1,1,N,id,id,+(*inds[A[idx]].rbegin()));
		}
	    } else {
		inds[A[idx]].erase(idx);
	    }
	    
	    bit.upd(id,-1);
	    
	}


	// insert
	A[idx] = V[i];
	{
	    int id = lower_bound(ord.begin(), ord.end(), A[idx]) - ord.begin();
	    bit.upd(id,+1);
	    tree.rangeAdd(1,1,N,id+1,N,-1);
	    if (!inds[A[idx]].empty()) {
		tree.rangeAdd(1,1,N,id,id,-1);
		tree.rangeAdd(1,1,N,id,id,-(*inds[A[idx]].rbegin()));
	    }
	    inds[A[idx]].insert(idx);
	    tree.rangeAdd(1,1,N,id,id,+(*inds[A[idx]].rbegin()));


	    clean(id);
	    {
		int val = A[idx];
		int rightmost = *inds[val].rbegin();
		int id = lower_bound(ord.begin(), ord.end(), val) - ord.begin();
		tree.rangeAdd(1,1,N,id,id,+rightmost);
		int rnk = bit.qry(id-1) + int(inds[val].size()) - 1;
		tree.rangeAdd(1,1,N,id,id,-rnk);
	    }
	}

	// for (int j=1; j<=N; j++) {
	//     cout<<tree.queryMax(1,1,N,j,j)<<" ";
	// }
	// cout<<endl;
	
	res[i] = tree.queryMax(1,1,N,1,N);
	//cout<<res[i]<<": expect: "<<brute(A)<<endl;
	//assert(res[i] == brute(A));

	
	
    }

    return res;
}

// int main() {
//     ios_base::sync_with_stdio(false); cin.tie(0);  cout.tie(0);

//     int n,q;
//     cin>>n>>q;
//     vector<int> a(n);
//     for (int i=0; i<n; i++) {
// 	cin>>a[i];
//     }
//     vector<int> x, v;
//     while (q--) {
// 	int i, val;
// 	cin>>i>>val;
// 	x.push_back(i);
// 	v.push_back(val);
//     }

//     auto res = countScans(a,x,v);
//     for (int i: res) cout<<i<<" ";
//     cout<<endl;
    
    
//     return 0;
// }
# Verdict Execution time Memory Grader output
1 Correct 3 ms 512 KB Output is correct
2 Correct 5 ms 768 KB Output is correct
3 Correct 11 ms 1152 KB Output is correct
4 Correct 10 ms 1152 KB Output is correct
5 Correct 10 ms 1152 KB Output is correct
6 Correct 10 ms 1152 KB Output is correct
7 Correct 10 ms 1152 KB Output is correct
8 Correct 10 ms 1152 KB Output is correct
9 Correct 10 ms 1152 KB Output is correct
10 Correct 10 ms 1024 KB Output is correct
11 Correct 10 ms 1024 KB Output is correct
12 Correct 13 ms 1024 KB Output is correct
13 Correct 10 ms 1024 KB Output is correct
14 Correct 11 ms 1024 KB Output is correct
15 Correct 10 ms 1024 KB Output is correct
16 Correct 10 ms 1024 KB Output is correct
17 Correct 9 ms 1024 KB Output is correct
18 Correct 12 ms 1024 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 512 KB Output is correct
2 Correct 5 ms 768 KB Output is correct
3 Correct 11 ms 1152 KB Output is correct
4 Correct 10 ms 1152 KB Output is correct
5 Correct 10 ms 1152 KB Output is correct
6 Correct 10 ms 1152 KB Output is correct
7 Correct 10 ms 1152 KB Output is correct
8 Correct 10 ms 1152 KB Output is correct
9 Correct 10 ms 1152 KB Output is correct
10 Correct 10 ms 1024 KB Output is correct
11 Correct 10 ms 1024 KB Output is correct
12 Correct 13 ms 1024 KB Output is correct
13 Correct 10 ms 1024 KB Output is correct
14 Correct 11 ms 1024 KB Output is correct
15 Correct 10 ms 1024 KB Output is correct
16 Correct 10 ms 1024 KB Output is correct
17 Correct 9 ms 1024 KB Output is correct
18 Correct 12 ms 1024 KB Output is correct
19 Correct 44 ms 3244 KB Output is correct
20 Correct 48 ms 3832 KB Output is correct
21 Correct 46 ms 3832 KB Output is correct
22 Correct 49 ms 3832 KB Output is correct
23 Correct 49 ms 3448 KB Output is correct
24 Correct 46 ms 3448 KB Output is correct
25 Correct 47 ms 3320 KB Output is correct
26 Correct 44 ms 3320 KB Output is correct
27 Correct 48 ms 3096 KB Output is correct
28 Correct 44 ms 3192 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 20 ms 2048 KB Output is correct
2 Correct 86 ms 3196 KB Output is correct
3 Correct 163 ms 4464 KB Output is correct
4 Correct 154 ms 4464 KB Output is correct
5 Correct 148 ms 4464 KB Output is correct
6 Correct 151 ms 4464 KB Output is correct
7 Correct 142 ms 4468 KB Output is correct
8 Correct 149 ms 4464 KB Output is correct
9 Correct 146 ms 4464 KB Output is correct
10 Correct 123 ms 6640 KB Output is correct
11 Correct 122 ms 6640 KB Output is correct
12 Correct 128 ms 6640 KB Output is correct
13 Correct 122 ms 6640 KB Output is correct
14 Correct 124 ms 6648 KB Output is correct
15 Correct 130 ms 6640 KB Output is correct
16 Correct 120 ms 6640 KB Output is correct
17 Correct 117 ms 6640 KB Output is correct
18 Correct 116 ms 6640 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 512 KB Output is correct
2 Correct 5 ms 768 KB Output is correct
3 Correct 11 ms 1152 KB Output is correct
4 Correct 10 ms 1152 KB Output is correct
5 Correct 10 ms 1152 KB Output is correct
6 Correct 10 ms 1152 KB Output is correct
7 Correct 10 ms 1152 KB Output is correct
8 Correct 10 ms 1152 KB Output is correct
9 Correct 10 ms 1152 KB Output is correct
10 Correct 10 ms 1024 KB Output is correct
11 Correct 10 ms 1024 KB Output is correct
12 Correct 13 ms 1024 KB Output is correct
13 Correct 10 ms 1024 KB Output is correct
14 Correct 11 ms 1024 KB Output is correct
15 Correct 10 ms 1024 KB Output is correct
16 Correct 10 ms 1024 KB Output is correct
17 Correct 9 ms 1024 KB Output is correct
18 Correct 12 ms 1024 KB Output is correct
19 Correct 44 ms 3244 KB Output is correct
20 Correct 48 ms 3832 KB Output is correct
21 Correct 46 ms 3832 KB Output is correct
22 Correct 49 ms 3832 KB Output is correct
23 Correct 49 ms 3448 KB Output is correct
24 Correct 46 ms 3448 KB Output is correct
25 Correct 47 ms 3320 KB Output is correct
26 Correct 44 ms 3320 KB Output is correct
27 Correct 48 ms 3096 KB Output is correct
28 Correct 44 ms 3192 KB Output is correct
29 Correct 20 ms 2048 KB Output is correct
30 Correct 86 ms 3196 KB Output is correct
31 Correct 163 ms 4464 KB Output is correct
32 Correct 154 ms 4464 KB Output is correct
33 Correct 148 ms 4464 KB Output is correct
34 Correct 151 ms 4464 KB Output is correct
35 Correct 142 ms 4468 KB Output is correct
36 Correct 149 ms 4464 KB Output is correct
37 Correct 146 ms 4464 KB Output is correct
38 Correct 123 ms 6640 KB Output is correct
39 Correct 122 ms 6640 KB Output is correct
40 Correct 128 ms 6640 KB Output is correct
41 Correct 122 ms 6640 KB Output is correct
42 Correct 124 ms 6648 KB Output is correct
43 Correct 130 ms 6640 KB Output is correct
44 Correct 120 ms 6640 KB Output is correct
45 Correct 117 ms 6640 KB Output is correct
46 Correct 116 ms 6640 KB Output is correct
47 Correct 1640 ms 65612 KB Output is correct
48 Correct 7405 ms 198684 KB Output is correct
49 Correct 7369 ms 218816 KB Output is correct
50 Correct 7086 ms 218596 KB Output is correct
51 Correct 7187 ms 218636 KB Output is correct
52 Correct 7077 ms 218640 KB Output is correct
53 Correct 7107 ms 218704 KB Output is correct
54 Correct 6825 ms 218648 KB Output is correct
55 Correct 7180 ms 218684 KB Output is correct
56 Correct 6768 ms 218656 KB Output is correct
57 Correct 6855 ms 218656 KB Output is correct
58 Correct 6996 ms 218908 KB Output is correct
59 Correct 6116 ms 197088 KB Output is correct
60 Correct 6075 ms 197052 KB Output is correct
61 Correct 6121 ms 196840 KB Output is correct
62 Correct 5747 ms 186528 KB Output is correct
63 Correct 5671 ms 186560 KB Output is correct
64 Correct 5882 ms 186496 KB Output is correct
65 Correct 5361 ms 176256 KB Output is correct
66 Correct 5171 ms 176092 KB Output is correct
67 Correct 5242 ms 176212 KB Output is correct