Submission #233606

#TimeUsernameProblemLanguageResultExecution timeMemory
233606dolphingarlicIslands (IOI08_islands)C++14
80 / 100
636 ms131076 KiB
/* IOI 2008 Islands - First, split the graph up into its connected components. We want the sum of the longest paths in each component - Notice how each component is made of a single cycle with trees appended to each node on the cycle - Case 1: The longest path lies in one of the trees - Just use DP to find this length - Case 2: The longest path goes from one tree to the other and crosses the cycle - Let dp[i] = The length of the longest path going through node i - If we flatten the cycle by removing an edge, then notice how we can use prefix sums to get the answer in this case - Just handle these 2 cases for each component - Complexity: O(N) */ #include <bits/stdc++.h> #define FOR(i, x, y) for (int i = x; i < y; i++) typedef long long ll; using namespace std; struct Edge { int idx, first; ll second; bool operator!=(Edge B) { return idx != B.idx; } }; vector<Edge> graph[1010101], cycle; ll discarded, ans = 0, cmp_ans, dp[1010101], p[5][1010101]; int cycle_start = 0; bool processed[1010101], visited[1010101], on_cycle[1010101], adding = false; void find_cycle(int node, Edge parent = {0, 0, 0}) { if (visited[node]) { cycle_start = node; cycle.push_back({0, node, 0}); cycle.push_back(parent); adding = true; return; } visited[node] = true; for (Edge i : graph[node]) if (i != parent) { find_cycle(i.first, {i.idx, node, i.second}); if (cycle_start) { if (node == cycle_start) adding = false; if (adding) cycle.push_back(parent); return; } } } void calc_tree(int node, int parent = 0) { processed[node] = true; ll mx = 0, sc = 0; for (Edge i : graph[node]) if (i.first != parent && !on_cycle[i.first]) { calc_tree(i.first, node); if (dp[i.first] + i.second > mx) sc = mx, mx = dp[i.first] + i.second; else if (dp[i.first] + i.second > sc) sc = dp[i.first] + i.second; } dp[node] = mx; cmp_ans = max(cmp_ans, mx + sc); } int main() { ios_base::sync_with_stdio(0); cin.tie(0); int n; cin >> n; FOR(i, 1, n + 1) { int v; ll l; cin >> v >> l; graph[i].push_back({i, v, l}); graph[v].push_back({i, i, l}); } FOR(i, 1, n + 1) if (!processed[i]) { cycle.clear(); cycle_start = 0; find_cycle(i); discarded = cycle.back().second; cycle.pop_back(); for (Edge j : cycle) on_cycle[j.first] = true; cmp_ans = 0; int m = cycle.size(); FOR(j, 1, m) p[0][j] = p[0][j - 1] + cycle[j].second; for (int j = m - 2; j >= 0; j--) p[1][j] = p[1][j + 1] + cycle[j + 1].second; FOR(j, 0, m) { calc_tree(cycle[j].first); p[2][j] = dp[cycle[j].first] - p[0][j]; p[3][j] = dp[cycle[j].first] + p[0][j]; p[4][j] = dp[cycle[j].first] + p[1][j]; } ll mx = 0; FOR(j, 0, m) { cmp_ans = max(cmp_ans, p[3][j] + mx); mx = max(mx, p[2][j]); } mx = p[4][m - 1]; for (int j = m - 2; j >= 0; j--) { cmp_ans = max(cmp_ans, p[3][j] + mx + discarded); mx = max(mx, p[4][j]); } ans += cmp_ans; FOR(j, 0, 5) FOR(k, 0, m) p[j][k] = 0; } cout << ans; return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...