이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
using namespace std;
template <class T> using ordered_set = tree <T, null_type, less <T>, rb_tree_tag, tree_order_statistics_node_update>;
int ts[100005], te[100005];
struct segment{
int val;
int lazy;
int mx;
} seg[400005];
int n, nas;
int niz[100005];
void propagate(int node, int l, int r){
if(!seg[node].lazy) return;
seg[node].val = 0;
if(l == r) return;
seg[node*2].lazy = seg[node*2+1].lazy = 1;
}
void init(int node, int l, int r){
seg[node].lazy = 0;
if(l == r){
seg[node].val = niz[l];
seg[node].mx = niz[l];
return;
}
int mid = (l+r)/2;
init(node*2, l, mid);
init(node*2+1, mid+1, r);
seg[node].val = seg[node*2].val + seg[node*2+1].val;
seg[node].mx = max(seg[node*2].mx, seg[node*2+1].mx);
}
int getsum(int node, int l, int r, int tl, int tr){
propagate(node, l, r);
if(tl > r || l > tr) return 0;
if(tl <= l && r <= tr) return seg[node].val;
int mid = (l+r)/2;
return getsum(node*2, l, mid, tl, tr) + getsum(node*2+1, mid+1, r, tl, tr);
}
void flatten(int node, int l, int r, int tl, int tr){
propagate(node, l, r);
if(tl > r || l > tr) return;
if(tl <= l && r <= tr){
seg[node].lazy = 1;
propagate(node, l, r);
return;
}
int mid = (l+r)/2;
flatten(node*2, l, mid, tl, tr);
flatten(node*2+1, mid+1, r, tl, tr);
seg[node].val = seg[node*2].val + seg[node*2+1].val;
}
void updpoint(int node, int l, int r, int x, int val){
if(l == r){
seg[node].mx = val;
return;
}
int mid = (l+r)/2;
if(x <= mid) updpoint(node*2, l, mid, x, val);
else updpoint(node*2+1, mid+1, r, x, val);
seg[node].mx = max(seg[node*2].mx, seg[node*2+1].mx);
}
int getmax(int node, int l, int r, int tl, int tr){
if(tl > r || l > tr) return 0;
if(tl <= l && r <= tr) return seg[node].mx;
int mid = (l+r)/2;
return max(getmax(node*2, l, mid, tl, tr), getmax(node*2+1, mid+1, r, tl, tr));
}
int findnum(int x){
/// najmanji veci jednak
int l = 1, r = n, res = n;
while(l <= r){
int mid = (l+r)/2;
int k = getsum(1, 1, n, 1, mid);
if(k >= x){
res = mid;
r = mid-1;
}
else l = mid+1;
}
return res;
}
ordered_set <pair <int, int>> q;
vector <int> vec[100005];
vector <int> nazad[100005];
int proveri(){
int l=0, r = q.size()-1, res = -1;
while(l <= r){
int mid = (l+r)/2;
pair <int, int> x = *q.find_by_order(mid);
if(getmax(1, 1, n, -x.first, x.second) <= nas){
res = mid;
l = mid+1;
}
else r = mid-1;
}
return res+1;
}
int GetBestPosition(int N, int C, int R, int *K, int *S, int *E) {
n = N, nas = R+1;
for(int i=1; i<=n; i++) niz[i] = 1;
init(1, 1, n);
for(int i=0; i<C; i++){
S[i]++;
E[i]++;
ts[i+1] = findnum(S[i]);
int tkraj = findnum(E[i]);
flatten(1, 1, N, ts[i+1]+1, tkraj);
}
init(1, 1, n);
for(int i=0; i<C; i++){
int tpoc = findnum(S[i]);
te[i+1] = findnum(E[i]);
flatten(1, 1, N, tpoc, te[i+1]-1);
}
for(int i=1; i<=C; i++){
vec[ts[i]].push_back(te[i]);
nazad[te[i]+1].push_back(ts[i]);
}
niz[1] = R+1;
for(int i=2; i<=n; i++){
niz[i] = K[i-2]+1;
}
int res = 0, tr = 1;
init(1, 1, n);
for(auto c : vec[1]) q.insert({-1, c});
res = max(res, proveri());
for(int i=2; i<=n; i++){
updpoint(1, 1, n, i, niz[i-1]);
updpoint(1, 1, n, i-1, niz[i]);
swap(niz[i-1], niz[i]);
for(auto c : vec[i]){
q.insert({-i, c});
}
for(auto c : nazad[i]){
q.erase({-c, i-1});
}
int k = proveri();
if(k > res){
res = k;
tr = i;
}
}
return tr-1;
}
/*
5 3 3
1
0
2
4
1 3
0 1
0 1
*/
/*
5 1 2
0 1 3 4
1 2
*/
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |