이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
#include "walk.h"
#include <algorithm>
#include <queue>
#include <set>
#include <map>
#include <tuple>
#define fs first
#define se second
using namespace std;
typedef long long llong;
typedef pair<int, int> pii;
typedef pair<llong, llong> pll;
const llong inf = 1e18;
int n, m;
int X[100001], H[100001];
int L[100001], R[100001], Y[100001];
llong dijkstra(int s, int e, const vector<vector<pii>> &edge) {
int n = int(edge.size()) - 1;
vector<llong> D(n + 1, inf);
priority_queue<pll> pq;
D[s] = 0;
pq.emplace(0, s);
while (!pq.empty()) {
llong x, d;
tie(d, x) = pq.top();
pq.pop();
d = -d;
if (D[x] != d) continue;
for (pii i : edge[x]) {
llong nd = d + i.se;
if (nd < D[i.fs]) {
D[i.fs] = nd;
pq.emplace(-nd, i.fs);
}
}
}
return D[e] < inf ? D[e] : -1;
}
llong solve12(int s, int e) {
int idx = n;
vector<vector<pii>> P(n + 1);
vector<int> S[20];
for (int i = 0; i < 20; ++i) S[i] = vector<int>(n + 1);
for (int i = 1; i <= n; ++i) {
P[i].emplace_back(0, i);
S[0][i] = H[i];
}
for (int i = 1; i < 20; ++i) {
for (int j = 1; j <= n; ++j) {
S[i][j] = S[i - 1][j];
int k = j + (1 << i - 1);
if (k <= n) S[i][j] = max(S[i][j], S[i - 1][k]);
}
}
for (int i = 1; i <= m; ++i) {
for (int j = L[i]; ; ++j) {
P[j].emplace_back(Y[i], ++idx);
if (j == R[i]) break;
for (int k = 20; k--; ) {
if (S[k][j + 1] < Y[i]) j += 1 << k;
}
}
}
vector<vector<pii>> edge(idx + 1);
auto add_edge = [&](int a, int b, int c) {
edge[a].emplace_back(b, c);
edge[b].emplace_back(a, c);
};
for (int i = 1; i <= n; ++i) {
sort(P[i].begin(), P[i].end());
for (int j = 1; j < int(P[i].size()); ++j) {
add_edge(P[i][j - 1].se, P[i][j].se, P[i][j].fs - P[i][j - 1].fs);
}
}
for (int i = 1; i <= m; ++i) {
int pri = -1, prx;
for (int j = L[i]; ; ++j) {
if (Y[i] > H[j]) continue;
int it = lower_bound(P[j].begin(), P[j].end(), pii(Y[i], 0))->se;
if (pri != -1) add_edge(pri, it, X[j] - prx);
pri = it;
prx = X[j];
if (j == R[i]) break;
for (int k = 20; k--; ) {
if (S[k][j + 1] < Y[i]) j += 1 << k;
}
}
}
return dijkstra(s, e, edge);
}
llong solve34() {
vector<vector<int>> P(n + 1), S(n + 1), E(n + 1);
P[1].push_back(0);
P[n].push_back(0);
S[1].push_back(0);
E[n].push_back(0);
for (int i = 1; i <= m; ++i) {
P[L[i]].push_back(Y[i]);
P[R[i]].push_back(Y[i]);
S[L[i]].push_back(Y[i]);
E[R[i]].push_back(Y[i]);
}
map<int, vector<pii>> I;
vector<vector<pii>> edge(1);
auto add_edge = [&](int a, int b, int c) {
edge[a].emplace_back(b, c);
edge[b].emplace_back(a, c);
};
multiset<int> sp;
int idx = 0;
for (int i = 1; i <= n; ++i) {
for (int j : S[i]) sp.insert(j);
sort(P[i].begin(), P[i].end());
P[i].erase(unique(P[i].begin(), P[i].end()), P[i].end());
vector<pii> V;
for (int j : P[i]) {
auto itL = sp.lower_bound(j);
auto itU = sp.upper_bound(j);
if (itL != sp.begin()) {
int x = *prev(itL);
V.emplace_back(j, x);
}
if (itU != sp.end() && *itU <= H[i]) {
int x = *itU;
V.emplace_back(j, x);
}
}
vector<int> N;
for (pii j : V) {
N.push_back(j.fs);
N.push_back(j.se);
}
sort(N.begin(), N.end());
N.erase(unique(N.begin(), N.end()), N.end());
edge.resize(edge.size() + N.size());
for (pii j : V) {
int a = upper_bound(N.begin(), N.end(), j.fs) - N.begin() + idx;
int b = upper_bound(N.begin(), N.end(), j.se) - N.begin() + idx;
add_edge(a, b, abs(j.fs - j.se));
}
for (int j : N) I[j].emplace_back(i, ++idx);
for (int j : E[i]) sp.erase(sp.find(j));
}
for (int i = 1; i <= m; ++i) {
const vector<pii> &V = I[Y[i]];
auto it = lower_bound(V.begin(), V.end(), pii(L[i], 0));
int pri = -1, prx;
while (it != V.end() && it->fs <= R[i]) {
if (pri != -1) add_edge(pri, it->se, X[it->fs] - prx);
prx = X[it->fs];
pri = it->se;
++it;
}
}
const vector<pii> &V = I[0];
if (int(V.size()) < 2 || V[0].fs != 1 || V.back().fs != n) return -1;
int st = V[0].se, ed = V.back().se;
return dijkstra(st, ed, edge);
}
llong min_distance(vector<int> x, vector<int> h, vector<int> l, vector<int> r, vector<int> y, int s, int g) {
n = x.size();
if (n == 1) return 0;
m = l.size();
for (int i = 1; i <= n; ++i) {
X[i] = x[i - 1];
H[i] = h[i - 1];
}
for (int i = 1; i <= m; ++i) {
L[i] = l[i - 1] + 1;
R[i] = r[i - 1] + 1;
Y[i] = y[i - 1];
}
if (s == 0 && g == n - 1) {
return solve34();
}
return solve12(s + 1, g + 1);
}
컴파일 시 표준 에러 (stderr) 메시지
walk.cpp: In function 'llong solve12(int, int)':
walk.cpp:55:33: warning: suggest parentheses around '-' inside '<<' [-Wparentheses]
int k = j + (1 << i - 1);
~~^~~
walk.cpp:84:36: warning: 'prx' may be used uninitialized in this function [-Wmaybe-uninitialized]
if (pri != -1) add_edge(pri, it, X[j] - prx);
~~~~~~~~^~~~~~~~~~~~~~~~~~~~~
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |