Submission #172640

#TimeUsernameProblemLanguageResultExecution timeMemory
172640dolphingarlicLand of the Rainbow Gold (APIO17_rainbow)C++14
23 / 100
3055 ms204636 KiB
/* APIO 2017 Rainbow - We can view a rectangle as a planar graph - Put temporary rivers on the outside of the rectangle - Each river segment is a node and adjacent rivers constitute an edge - This problem then becomes finding the number of faces of a planar graph - We can solve this with Euler's formula - By Euler's formula, we have F = E - V + 1 + C where F is faces, E is edges, V is vertices, and C is the number of components - Each corner of a square is a vertex and each side of a square is an edge if it has a river */ #include "rainbow.h" #include <bits/stdc++.h> #pragma GCC Optimize("unroll-loops") #pragma GCC Optimize("O3") #pragma GCC target("sse4,avx2,fma,avx") #define FOR(i, x, y) for (int i = x; i < y; i++) using namespace std; int rnd() { return ((rand() % (1 << 15)) << 16) + (rand() % (1 << 15)); } struct TreapNode { TreapNode *l, *r; int pos, key, mn, mx; int val, g; TreapNode(int position, int value) { l = r = nullptr; mn = mx = pos = position; key = rnd(); val = g = value; } void update() { g = val; if (l) g += l->g; if (r) g += r->g; mn = (l ? l->mn : pos); mx = (r ? r->mx : pos); } }; struct Treap { TreapNode *root; Treap() { root = nullptr; srand(rnd()); } void split(TreapNode *t, int pos, TreapNode *&l, TreapNode *&r) { if (t == nullptr) { l = r = nullptr; return; } if (t->pos < pos) { split(t->r, pos, l, r); t->r = l; l = t; } else { split(t->l, pos, l, r); t->l = r; r = t; } t->update(); } TreapNode* merge(TreapNode *l, TreapNode *r) { if (!l || !r) return l ? l : r; if (l->key < r->key) { l->r = merge(l->r, r); l->update(); return l; } else { r->l = merge(l, r->l); r->update(); return r; } } bool find(int pos) { TreapNode *t = root; while (t) { if (t->pos == pos) return true; if (t->pos > pos) t = t->l; else t = t->r; } return false; } void update(TreapNode *t, int pos, int val) { if (t->pos == pos) { t->val = val; t->update(); return; } if (t->pos > pos) update(t->l, pos, val); else update(t->r, pos, val); t->update(); } void insert(int pos, int val) { if (find(pos)) update(root, pos, val); else { TreapNode *l, *r; split(root, pos, l, r); root = merge(merge(l, new TreapNode(pos, val)), r); } } int query(TreapNode *t, int st, int en) { if (t->mx < st || en < t->mn) return 0; if (st <= t->mn && t->mx <= en) return t->g; int ans = (st <= t->pos && t->pos <= en ? t->val : 0); if (t->l) ans += query(t->l, st, en); if (t->r) ans += query(t->r, st, en); return ans; } int query(int st, int en) { if (!root) return 0; return query(root, st, en); } }; struct Segtree { Segtree *l, *r; Treap treap; int lo, hi; Segtree() { l = r = nullptr; } Segtree(int st, int en) { l = r = nullptr; lo = st, hi = en; } void new_left() { if (!l) l = new Segtree(lo, (lo + hi) / 2); } void new_right() { if (!r) r = new Segtree((lo + hi) / 2 + 1, hi); } void fix(int pos) { int val = 0; if (l) val += l->treap.query(pos, pos); if (r) val += r->treap.query(pos, pos); treap.insert(pos, val); } void update(int x, int y, int val) { if (hi < x || x < lo) return; if (lo == hi) { treap.insert(y, val); return; } if (x <= (lo + hi) / 2) { new_left(); l->update(x, y, val); } else { new_right(); r->update(x, y, val); } fix(y); } int query(int t, int b, int st, int en) { if (hi < t || b < lo) return 0; if (t <= lo && hi <= b) return treap.query(st, en); int ans = 0; if (l) ans += l->query(t, b, st, en); if (r) ans += r->query(t, b, st, en); return ans; } }; Segtree vertices, edges, rivers; set<pair<int, int>> v, e, r; int mx_r, mn_r, mx_c, mn_c; void add_river(int x, int y) { v.insert({x, y}); v.insert({x + 1, y}); v.insert({x, y + 1}); v.insert({x + 1, y + 1}); e.insert({2 * x - 1, 2 * y}); e.insert({2 * x + 1, 2 * y}); e.insert({2 * x, 2 * y - 1}); e.insert({2 * x, 2 * y + 1}); r.insert({x, y}); } void init(int R, int C, int sr, int sc, int M, char *S) { srand(12341234); vertices = Segtree(1, R + 1); edges = Segtree(1, 2 * R + 1); rivers = Segtree(1, R); add_river(sr, sc); mx_r = mn_r = sr; mx_c = mn_c = sc; FOR(i, 0, M) { if (S[i] == 'N') sr--; if (S[i] == 'E') sc++; if (S[i] == 'S') sr++; if (S[i] == 'W') sc--; add_river(sr, sc); mx_r = max(mx_r, sr); mn_r = min(mn_r, sr); mx_c = max(mx_c, sc); mn_c = min(mn_c, sc); } for (pair<int, int> i : v) vertices.update(i.first, i.second, 1); for (pair<int, int> i : e) edges.update(i.first, i.second, 1); for (pair<int, int> i : r) rivers.update(i.first, i.second, 1); } int colour(int ar, int ac, int br, int bc) { int E = edges.query(2 * ar, 2 * br, 2 * ac, 2 * bc); int V = vertices.query(ar + 1, br, ac + 1, bc); int R = rivers.query(ar, br, ac, bc); int C = (ar >= mn_r || br <= mx_r || ac >= mn_c || bc <= mx_c ? 1 : 2); return E - V + C - R; }

Compilation message (stderr)

rainbow.cpp:16:0: warning: ignoring #pragma GCC Optimize [-Wunknown-pragmas]
 #pragma GCC Optimize("unroll-loops")
 
rainbow.cpp:17:0: warning: ignoring #pragma GCC Optimize [-Wunknown-pragmas]
 #pragma GCC Optimize("O3")
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...