이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
/*
O(N*logN) solution for Tournament.
Author: Giovanni Paolini
*/
#include <cstdio>
#include <iostream>
#include <cassert>
#include <vector>
#include <queue>
using namespace std;
int const MAXN = 2000000;
int const MAXLOGN = 22;
struct Node {
int start;
int end;
bool all_white; // True if the interval contains good knights only
bool almost_all_white; // True if the interval contains good knights only, except at most the first knight
int best_result; // The maximum length of a victory-path finishing in that node
int where_best; // Where is the best_result achieved
Node() {}
Node(int _start, int _end) {
start = _start;
end = _end;
best_result = 0;
}
};
int n,c,o;
bool rank[MAXN];
// Range tree
int range_tree[MAXLOGN][MAXN];
int size; // the size of the range tree
void make_range_tree() {
int m = n;
int step = 0;
while ( m > 0 ) {
for (int i=0; i<m; ++i) {
if ( step == 0 ) range_tree[step][i] = 1;
else {
range_tree[step][i] = range_tree[step-1][2*i] + range_tree[step-1][2*i+1];
}
}
if ( m > 1 ) m = (m+1)/2;
else m = 0;
step++;
}
size = step;
}
void change (int k, int delta) { // Change the value of position k by delta
int m = k;
for (int step = 0; step < size; ++step) {
range_tree[step][m] += delta;
m /= 2;
}
}
int find_knight (int k, int step, int m) { // Find the (initial) position of the k-th living knight, starting from a given node (step,m) of the range tree
if ( k > range_tree[step][m] ) return n;
if ( step == 0 ) {
assert(k == 1);
return m;
}
if ( range_tree[step-1][2*m] >= k ) return find_knight( k, step-1, 2*m );
else return find_knight( k - range_tree[step-1][2*m], step-1, 2*m+1 );
}
// Calls tree
vector<Node> calls_tree;
int father[MAXN]; // The index of current interval of the knight
int GetBestPosition(int N, int C, int R, int *K, int *S, int *E) {
n = N;
c = C;
int o = R;
make_range_tree();
rank[0] = 1;
Node nodo = Node( 0, 0 );
nodo.all_white = 1;
nodo.almost_all_white = 1;
nodo.where_best = 0;
calls_tree.push_back( nodo );
father[0] = 0;
for (int i=1; i<n; ++i) {
int r = K[i-1];
rank[i] = (r > o);
father[i] = i;
Node nodo = Node( i, i );
nodo.all_white = !rank[i];
nodo.almost_all_white = 1;
nodo.where_best = i;
calls_tree.push_back( nodo );
}
for (int i=0; i<c; ++i) {
int s = S[i]+1;
int e = E[i]+1;
int first = find_knight( s, size-1, 0 );
int last = find_knight( e+1, size-1, 0 ) - 1;
Node interval = Node( first, last ); // The new interval
bool all_white = 1;
bool almost_all_white = 1;
int best_child = -1;
int the_best = -1;
queue<int> to_change;
for (int j=s; j<=e; ++j) {
int knight = find_knight( j, size-1, 0 );
if ( j > s ) to_change.push( knight );
int old_int = father[knight];
father[knight] = calls_tree.size();
if ( calls_tree[old_int].all_white == 0 ) {
all_white = 0;
if ( j > s ) almost_all_white = 0;
else if ( calls_tree[old_int].almost_all_white == 0 ) almost_all_white = 0;
}
if ( calls_tree[old_int].best_result > the_best ) {
the_best = calls_tree[old_int].best_result;
best_child = old_int;
}
}
while ( !(to_change.empty()) ) {
int knight = to_change.front();
to_change.pop();
change( knight, -1 );
}
interval.all_white = all_white;
interval.almost_all_white = almost_all_white;
if ( almost_all_white ) {
interval.best_result = the_best + 1;
interval.where_best = calls_tree[ best_child ].where_best;
// Found an interval for which it is possible to win interval.best_result times by starting in position interval.where_best
}
else {
interval.best_result = the_best;
interval.where_best = calls_tree[ best_child ].where_best;
}
calls_tree.push_back(interval);
}
int t = calls_tree.size();
return calls_tree[t-1].where_best;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |