답안 #154339

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
154339 2019-09-20T19:15:08 Z dolphingarlic Jump (BOI06_jump) C++14
100 / 100
8 ms 1584 KB
#include <bits/stdc++.h>
#pragma GCC Optimize("O3")
#define FOR(i, x, y) for (ll i = x; i < y; i++)
#define MOD 1000000007
typedef long long ll;
using namespace std;

/*
  ######################################################################
  #######################   THE   BIG   INT   ##########################
*/
const int base = 1000000000;
const int base_digits = 9;
struct bigint {
    vector<int> a;
    int sign;
    /*<arpa>*/
    int size() {
        if (a.empty()) return 0;
        int ans = (a.size() - 1) * base_digits;
        int ca = a.back();
        while (ca) ans++, ca /= 10;
        return ans;
    }
    bigint operator^(const bigint &v) {
        bigint ans = 1, a = *this, b = v;
        while (!b.isZero()) {
            if (b % 2) ans *= a;
            a *= a, b /= 2;
        }
        return ans;
    }
    string to_string() {
        stringstream ss;
        ss << *this;
        string s;
        ss >> s;
        return s;
    }
    int sumof() {
        string s = to_string();
        int ans = 0;
        for (auto c : s) ans += c - '0';
        return ans;
    }
    /*</arpa>*/
    bigint() : sign(1) {}

    bigint(long long v) { *this = v; }

    bigint(const string &s) { read(s); }

    void operator=(const bigint &v) {
        sign = v.sign;
        a = v.a;
    }

    void operator=(long long v) {
        sign = 1;
        a.clear();
        if (v < 0) sign = -1, v = -v;
        for (; v > 0; v = v / base) a.push_back(v % base);
    }

    bigint operator+(const bigint &v) const {
        if (sign == v.sign) {
            bigint res = v;

            for (int i = 0, carry = 0;
                 i < (int)max(a.size(), v.a.size()) || carry; ++i) {
                if (i == (int)res.a.size()) res.a.push_back(0);
                res.a[i] += carry + (i < (int)a.size() ? a[i] : 0);
                carry = res.a[i] >= base;
                if (carry) res.a[i] -= base;
            }
            return res;
        }
        return *this - (-v);
    }

    bigint operator-(const bigint &v) const {
        if (sign == v.sign) {
            if (abs() >= v.abs()) {
                bigint res = *this;
                for (int i = 0, carry = 0; i < (int)v.a.size() || carry; ++i) {
                    res.a[i] -= carry + (i < (int)v.a.size() ? v.a[i] : 0);
                    carry = res.a[i] < 0;
                    if (carry) res.a[i] += base;
                }
                res.trim();
                return res;
            }
            return -(v - *this);
        }
        return *this + (-v);
    }

    void operator*=(int v) {
        if (v < 0) sign = -sign, v = -v;
        for (int i = 0, carry = 0; i < (int)a.size() || carry; ++i) {
            if (i == (int)a.size()) a.push_back(0);
            long long cur = a[i] * (long long)v + carry;
            carry = (int)(cur / base);
            a[i] = (int)(cur % base);
            // asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur),
            // "c"(base));
        }
        trim();
    }

    bigint operator*(int v) const {
        bigint res = *this;
        res *= v;
        return res;
    }

    void operator*=(long long v) {
        if (v < 0) sign = -sign, v = -v;
        for (int i = 0, carry = 0; i < (int)a.size() || carry; ++i) {
            if (i == (int)a.size()) a.push_back(0);
            long long cur = a[i] * (long long)v + carry;
            carry = (int)(cur / base);
            a[i] = (int)(cur % base);
            // asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur),
            // "c"(base));
        }
        trim();
    }

    bigint operator*(long long v) const {
        bigint res = *this;
        res *= v;
        return res;
    }

    friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) {
        int norm = base / (b1.a.back() + 1);
        bigint a = a1.abs() * norm;
        bigint b = b1.abs() * norm;
        bigint q, r;
        q.a.resize(a.a.size());

        for (int i = a.a.size() - 1; i >= 0; i--) {
            r *= base;
            r += a.a[i];
            int s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()];
            int s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1];
            int d = ((long long)base * s1 + s2) / b.a.back();
            r -= b * d;
            while (r < 0) r += b, --d;
            q.a[i] = d;
        }

        q.sign = a1.sign * b1.sign;
        r.sign = a1.sign;
        q.trim();
        r.trim();
        return make_pair(q, r / norm);
    }

    bigint operator/(const bigint &v) const { return divmod(*this, v).first; }

    bigint operator%(const bigint &v) const { return divmod(*this, v).second; }

    void operator/=(int v) {
        if (v < 0) sign = -sign, v = -v;
        for (int i = (int)a.size() - 1, rem = 0; i >= 0; --i) {
            long long cur = a[i] + rem * (long long)base;
            a[i] = (int)(cur / v);
            rem = (int)(cur % v);
        }
        trim();
    }

    bigint operator/(int v) const {
        bigint res = *this;
        res /= v;
        return res;
    }

    int operator%(int v) const {
        if (v < 0) v = -v;
        int m = 0;
        for (int i = a.size() - 1; i >= 0; --i)
            m = (a[i] + m * (long long)base) % v;
        return m * sign;
    }

    void operator+=(const bigint &v) { *this = *this + v; }
    void operator-=(const bigint &v) { *this = *this - v; }
    void operator*=(const bigint &v) { *this = *this * v; }
    void operator/=(const bigint &v) { *this = *this / v; }

    bool operator<(const bigint &v) const {
        if (sign != v.sign) return sign < v.sign;
        if (a.size() != v.a.size())
            return a.size() * sign < v.a.size() * v.sign;
        for (int i = a.size() - 1; i >= 0; i--)
            if (a[i] != v.a[i]) return a[i] * sign < v.a[i] * sign;
        return false;
    }

    bool operator>(const bigint &v) const { return v < *this; }
    bool operator<=(const bigint &v) const { return !(v < *this); }
    bool operator>=(const bigint &v) const { return !(*this < v); }
    bool operator==(const bigint &v) const {
        return !(*this < v) && !(v < *this);
    }
    bool operator!=(const bigint &v) const { return *this < v || v < *this; }

    void trim() {
        while (!a.empty() && !a.back()) a.pop_back();
        if (a.empty()) sign = 1;
    }

    bool isZero() const { return a.empty() || (a.size() == 1 && !a[0]); }

    bigint operator-() const {
        bigint res = *this;
        res.sign = -sign;
        return res;
    }

    bigint abs() const {
        bigint res = *this;
        res.sign *= res.sign;
        return res;
    }

    long long longValue() const {
        long long res = 0;
        for (int i = a.size() - 1; i >= 0; i--) res = res * base + a[i];
        return res * sign;
    }

    friend bigint gcd(const bigint &a, const bigint &b) {
        return b.isZero() ? a : gcd(b, a % b);
    }
    friend bigint lcm(const bigint &a, const bigint &b) {
        return a / gcd(a, b) * b;
    }

    void read(const string &s) {
        sign = 1;
        a.clear();
        int pos = 0;
        while (pos < (int)s.size() && (s[pos] == '-' || s[pos] == '+')) {
            if (s[pos] == '-') sign = -sign;
            ++pos;
        }
        for (int i = s.size() - 1; i >= pos; i -= base_digits) {
            int x = 0;
            for (int j = max(pos, i - base_digits + 1); j <= i; j++)
                x = x * 10 + s[j] - '0';
            a.push_back(x);
        }
        trim();
    }

    friend istream &operator>>(istream &stream, bigint &v) {
        string s;
        stream >> s;
        v.read(s);
        return stream;
    }

    friend ostream &operator<<(ostream &stream, const bigint &v) {
        if (v.sign == -1) stream << '-';
        stream << (v.a.empty() ? 0 : v.a.back());
        for (int i = (int)v.a.size() - 2; i >= 0; --i)
            stream << setw(base_digits) << setfill('0') << v.a[i];
        return stream;
    }

    static vector<int> convert_base(const vector<int> &a, int old_digits,
                                    int new_digits) {
        vector<long long> p(max(old_digits, new_digits) + 1);
        p[0] = 1;
        for (int i = 1; i < (int)p.size(); i++) p[i] = p[i - 1] * 10;
        vector<int> res;
        long long cur = 0;
        int cur_digits = 0;
        for (int i = 0; i < (int)a.size(); i++) {
            cur += a[i] * p[cur_digits];
            cur_digits += old_digits;
            while (cur_digits >= new_digits) {
                res.push_back(int(cur % p[new_digits]));
                cur /= p[new_digits];
                cur_digits -= new_digits;
            }
        }
        res.push_back((int)cur);
        while (!res.empty() && !res.back()) res.pop_back();
        return res;
    }

    typedef vector<long long> vll;

    static vll karatsubaMultiply(const vll &a, const vll &b) {
        int n = a.size();
        vll res(n + n);
        if (n <= 32) {
            for (int i = 0; i < n; i++)
                for (int j = 0; j < n; j++) res[i + j] += a[i] * b[j];
            return res;
        }

        int k = n >> 1;
        vll a1(a.begin(), a.begin() + k);
        vll a2(a.begin() + k, a.end());
        vll b1(b.begin(), b.begin() + k);
        vll b2(b.begin() + k, b.end());

        vll a1b1 = karatsubaMultiply(a1, b1);
        vll a2b2 = karatsubaMultiply(a2, b2);

        for (int i = 0; i < k; i++) a2[i] += a1[i];
        for (int i = 0; i < k; i++) b2[i] += b1[i];

        vll r = karatsubaMultiply(a2, b2);
        for (int i = 0; i < (int)a1b1.size(); i++) r[i] -= a1b1[i];
        for (int i = 0; i < (int)a2b2.size(); i++) r[i] -= a2b2[i];

        for (int i = 0; i < (int)r.size(); i++) res[i + k] += r[i];
        for (int i = 0; i < (int)a1b1.size(); i++) res[i] += a1b1[i];
        for (int i = 0; i < (int)a2b2.size(); i++) res[i + n] += a2b2[i];
        return res;
    }

    bigint operator*(const bigint &v) const {
        vector<int> a6 = convert_base(this->a, base_digits, 6);
        vector<int> b6 = convert_base(v.a, base_digits, 6);
        vll a(a6.begin(), a6.end());
        vll b(b6.begin(), b6.end());
        while (a.size() < b.size()) a.push_back(0);
        while (b.size() < a.size()) b.push_back(0);
        while (a.size() & (a.size() - 1)) a.push_back(0), b.push_back(0);
        vll c = karatsubaMultiply(a, b);
        bigint res;
        res.sign = sign * v.sign;
        for (int i = 0, carry = 0; i < (int)c.size(); i++) {
            long long cur = c[i] + carry;
            res.a.push_back((int)(cur % 1000000));
            carry = (int)(cur / 1000000);
        }
        res.a = convert_base(res.a, 6, base_digits);
        res.trim();
        return res;
    }
};
/*
  #######################   THE   BIG   INT   ##########################
  ######################################################################
*/

vector<ll> graph[10001];
bigint dp[10001]{1};
vector<ll> topsort;
bool visited[10001];

void dfs(ll node) {
    visited[node] = true;
    for (ll i : graph[node]) {
        if (!visited[i]) dfs(i);
    }
    topsort.push_back(node);
}

int main() {
    iostream::sync_with_stdio(false);
    cin.tie(0);
    ll n;
    cin >> n;
    FOR(i, 0, n) FOR(j, 0, n) {
        ll k;
        cin >> k;
        if (k == 0) continue;
        if (j + k < n) graph[i * n + j].push_back(i * n + j + k);
        if (i + k < n) graph[i * n + j].push_back((i + k) * n + j);
    }

    dfs(0);

    while (topsort.size()) {
        for (ll i : graph[topsort.back()]) dp[i] += dp[topsort.back()];
        topsort.pop_back();
    }
    cout << dp[(n - 1) * n + (n - 1)];
    return 0;
}

Compilation message

jump.cpp:2:0: warning: ignoring #pragma GCC Optimize [-Wunknown-pragmas]
 #pragma GCC Optimize("O3")
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 1016 KB Output is correct
2 Correct 3 ms 892 KB Output is correct
3 Correct 3 ms 888 KB Output is correct
4 Correct 3 ms 888 KB Output is correct
5 Correct 3 ms 888 KB Output is correct
6 Correct 3 ms 888 KB Output is correct
7 Correct 3 ms 888 KB Output is correct
8 Correct 3 ms 888 KB Output is correct
9 Correct 3 ms 1016 KB Output is correct
10 Correct 3 ms 888 KB Output is correct
11 Correct 4 ms 1020 KB Output is correct
12 Correct 3 ms 888 KB Output is correct
13 Correct 3 ms 1016 KB Output is correct
14 Correct 3 ms 1016 KB Output is correct
15 Correct 4 ms 1144 KB Output is correct
16 Correct 7 ms 1400 KB Output is correct
17 Correct 6 ms 1400 KB Output is correct
18 Correct 7 ms 1528 KB Output is correct
19 Correct 7 ms 1400 KB Output is correct
20 Correct 8 ms 1584 KB Output is correct