Submission #1317778

#TimeUsernameProblemLanguageResultExecution timeMemory
1317778spetrMosaic (IOI24_mosaic)C++20
12 / 100
112 ms48924 KiB
#include <bits/stdc++.h> using namespace std; #define ll long long const ll mmod = 998244353; #define vl vector<long long> #define vll vector<vector<long long>> std::vector<long long> mosaic( std::vector<int> X, std::vector<int> Y, std::vector<int> T, std::vector<int> B, std::vector<int> L, std::vector<int> R){ ll n = X.size(); ll q = T.size(); // 1. Příprava mřížky (beze změny) vll row3, col3; vl x1, y1; for (ll i = 0; i < n; i++){ x1.push_back(X[i]); y1.push_back(Y[i]); } row3.push_back(x1); col3.push_back(y1); row3.push_back({Y[1]}); row3.push_back({Y[2]}); col3.push_back({X[1]}); col3.push_back({X[2]}); for (ll i = 1; i < 3; i++){ for (ll j = 1; j < n; j++){ ll v1 = 0; ll v2 = 0; if (row3[i][j-1] == 0 && row3[i-1][j] == 0) v1 = 1; if (col3[i][j-1] == 0 && col3[i-1][j] == 0) v2 = 1; row3[i].push_back(v1); col3[i].push_back(v2); } } // 2. Linearizace (beze změny) vl s1, s2, s3; for (ll i = n-1; i>=0; i--) s1.push_back(col3[0][i]); for (ll i = 1; i < n; i++) s1.push_back(row3[0][i]); for (ll i = n-1; i>=1; i--) s2.push_back(col3[1][i]); for (ll i = 2; i < n; i++) s2.push_back(row3[1][i]); for (ll i = n-1; i>=2; i--) s3.push_back(col3[2][i]); for (ll i = 3; i < n; i++) s3.push_back(row3[2][i]); // 3. Prefixové součty // Inicializujeme s nulou na začátku pro snazší indexování (p[b] - p[a]) vl p1 = {0}, p2 = {0}, p3 = {0}; for (ll x : s1) p1.push_back(p1.back() + x); for (ll x : s2) p2.push_back(p2.back() + x); for (ll x : s3) p3.push_back(p3.back() + x); // Vážený prefix pro Layer 3: q1[i] = suma s3[k]*(k+1) // q2 nepotřebujeme, klesání dopočítáme matematicky vl q1 = {0}; for (ll i = 0; i < s3.size(); i++){ q1.push_back(q1.back() + s3[i] * (i + 1)); } vl ans; for (ll i = 0; i < q; i++){ ll l = L[i], r = R[i], u = T[i], d = B[i]; ll a, b; ll suma = 0; // --- Layer 1 --- b = 0; a = 1e9; if (l == 0){ a = min(a, n-d-1); b = max(b, n-u); } if (u == 0){ a = min(a, n+l-1); b = max(b, n+r); } if (a < b) suma += p1[b] - p1[a]; // --- Layer 2 --- b = 0; a = 1e9; if (l <= 1 && r >= 1){ a = min(a, n-d-1); b = max(b, n-max(u,1ll)); } if (u <= 1 && d >= 1){ a = min(a, n+max(l,1ll)-3); b = max(b, n+r-2); } if (a < b) suma += p2[b] - p2[a]; // --- Layer 3 (ZÁSADNÍ OPRAVA) --- if (r >= 2 && d >= 2){ ll l_in = max(2ll, (ll)l); ll u_in = max(2ll, (ll)u); // Musíme zkontrolovat, zda po oříznutí zbyl platný obdélník if (l_in < r && u_in < d) { // Tvoje výpočty hranic a a b ll a = l_in - 2 + (n - 1) - d; ll b = r - 2 + n - u_in; // a = start (inclusive), b = end (exclusive) ll t = min(d - u_in, r - l_in); // tloušťka // Bod zlomu (vrchol střechy) // (a + b - 1) / 2 zajistí správné rozdělení pro liché i sudé délky ll mid = (a + b - 1) / 2; // Definice hranic pro jednotlivé fáze: // 1. Kde končí růst? // Buď v půlce (mid), nebo když dosáhne tloušťky t (a + t - 1) ll end_rise = min(mid, a + t - 1); // 2. Kde začíná pokles? // Buď těsně za půlkou, nebo když tloušťka začne klesat z t (b - t) ll start_fall = max(mid + 1, b - t); // --- Fáze 1: RŮST (Rising) --- // Interval [a, end_rise] // Váha je (index - a + 1) if (a <= end_rise) { // Suma i*s[i] - a*suma s[i] + suma s[i] ... zjednodušeno pomocí q1: // Vzorec: (q1[R] - q1[L]) - a * (p3[R] - p3[L]) suma += (q1[end_rise + 1] - q1[a]); suma -= (p3[end_rise + 1] - p3[a]) * a; } // --- Fáze 2: POKLES (Falling) --- // Interval [start_fall, b) // Váha je (b - index) -> to je to samé jako (b + 1) - (index + 1) if (start_fall < b) { // Vzorec: (b+1)*Suma - VáženáSuma ll range_sum = p3[b] - p3[start_fall]; ll range_w_sum = q1[b] - q1[start_fall]; suma += range_sum * (b + 1) - range_w_sum; } // --- Fáze 3: PLOŠINA (Plateau) --- // Interval mezi [end_rise + 1, start_fall - 1] // Váha je konstantní t if (end_rise + 1 < start_fall) { suma += (p3[start_fall] - p3[end_rise + 1]) * t; } } } ans.push_back(suma); } return ans; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...