Submission #1303562

#TimeUsernameProblemLanguageResultExecution timeMemory
1303562CSQ31Packing Biscuits (IOI20_biscuits)C++20
0 / 100
1109 ms355968 KiB
#include "biscuits.h" #include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for(int i=a; i<(b); ++i) #define all(a) begin(a), end(a) #define sz(x) (int)(x).size() #define fi first #define se second #define pb push_back template<typename T> using v = vector<T>; template<typename T> using vv = v<vector<T>>; typedef long long ll; typedef pair<int ,int > pii; typedef v<int> vi; //Represent y as a subset of indices //yi = {0,x} //a0 >= y0 //a1 + a0/2 >= y1 + y0/2 //a2 + a1/2 + a0 >= y2 + y1/2 + y0/4 //... //mutiply the ith eqn by 2^i, we get //a0 >= y0 //2a1 + a0 >= 2y1 + y0 //4a2 + 2a1 + a0 >= 4y2 + 2y1 + y0 //2^k*ak + .... + a0 >= 2^k*yk + ... y0 //Let S = set of possible values of y0+2y1+4y2 + ... 2^i * yi //after processing a0 to ai //we need to do two things //1) S = S U 2^i * x //2) truncate S by p(i) = sum_j<=i 2^j * aj //Obs: gap between segments <= 2^i, implying the number of segments is either 1 or 2 const ll INF = 2e18; ll count_tastiness(ll x, vector<ll> a) { ll k = sz(a); vector<ll>p(60,0); for(int i=0;i<k;i++)p[i] = a[i]* (1LL<<i); for(int i=1;i<60;i++)p[i] += p[i-1]; //for(ll x:p)cout<<x<<" "; //cout<<'\n'; set<ll,greater<ll>>s; s.insert(0); for(int i=0;i<60;i++){ if(x >= INF/(1LL<i)){} else{ vector<ll>t; for(ll v:s){ ll val = v + (1LL<<i)*x; if(val <= p[i])t.push_back(val); } for(ll v:t)s.insert(v); } while(!s.empty() && *s.begin() > p[i])s.erase(s.begin()); //cout<<"At i\n"; //for(ll x:s)cout<<x<<" ";cout<<'\n'; } return sz(s); }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...