Submission #130011

# Submission time Handle Problem Language Result Execution time Memory
130011 2019-07-13T18:51:17 Z qkxwsm Naan (JOI19_naan) C++14
100 / 100
610 ms 117116 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;

random_device(rd);
mt19937 rng(rd());
const long long FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();

struct custom_hash
{
	template<class T>
	unsigned long long operator()(T v) const
	{
		unsigned long long x = v;
		x += FIXED_RANDOM;
		// x += 11400714819323198485ull;
		// x = (x ^ (x >> 30)) * 13787848793156543929ull;
		x = (x ^ (x >> 27)) * 10723151780598845931ull;
		return x ^ (x >> 31);
	}
};

template<class T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<class T, class U> using hash_table = gp_hash_table<T, U, custom_hash>;

template<class T>
T randomize(T mod)
{
	return (uniform_int_distribution<T>(0, mod - 1))(rng);
}
template<class T>
void readi(T &x)
{
	x = 0;
	bool negative = false;
	char c = ' ';
	while (c < '-')
	{
		c = getchar();
	}
	if (c == '-')
	{
		negative = true;
		c = getchar();
	}
	while (c >= '0')
	{
		x = x * 10 + (c - '0');
		c = getchar();
	}
	if (negative)
	{
		x = -x;
	}
}
template<class T>
void printi(T output)
{
	if (output == 0)
	{
		putchar('0');
		return;
	}
	if (output < 0)
	{
		putchar('-');
		output = -output;
	}
	int buf[20], n = 0;
	while(output)
	{
		buf[n] = ((output % 10));
		output /= 10;
		n++;
	}
	for (n--; n >= 0; n--)
	{
		putchar(buf[n] + '0');
	}
	return;
}
template<class T>
void ckmin(T &a, T b)
{
	a = min(a, b);
}
template<class T>
void ckmax(T &a, T b)
{
	a = max(a, b);
}
long long expo(long long a, long long e, long long mod)
{
	return ((e == 0) ? 1 : ((expo(a * a % mod, e >> 1, mod)) * ((e & 1) ? a : 1) % mod));
}
template<class T, class U>
void nmod(T &x, U mod)
{
	if (x >= mod) x -= mod;
}
template<class T>
T gcd(T a, T b)
{
	return (b ? gcd(b, a % b) : a);
}

#define y0 ___y0
#define y1 ___y1
#define MP make_pair
#define PB push_back
#define LB lower_bound
#define UB upper_bound
#define fi first
#define se second
#define DBG(x) cerr << #x << " = " << (x) << endl
#define SZ(x) ((int) ((x).size()))
#define FOR(i, a, b) for (auto i = (a); i < (b); i++)
#define FORD(i, a, b) for (auto i = (a) - 1; i >= (b); i--)
#define ALL(x) (x).begin(), (x).end()

const long double PI = 4.0 * atan(1.0);
const long double EPS = 1e-7;

#define MAGIC 347
#define SINF 10007
#define CO 1000007
#define INF 1000000007
#define BIG 1000000931
#define LARGE 1696969696967ll
#define GIANT 2564008813937411ll
#define LLINF 2696969696969696969ll
#define MAXN 2013

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<ld, ld> pdd;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef vector<ld> vd;
typedef vector<pii> vpi;
typedef vector<pll> vpl;
typedef vector<pdd> vpd;

int N, L;
ll num[MAXN][MAXN];
ld grid[MAXN][MAXN];
ld taken[MAXN];
bitset<MAXN> inside;
vpl ans;
vi ord;

int32_t main()
{
	ios_base::sync_with_stdio(0); cin.tie(0);
	cout << fixed << setprecision(10);
	cerr << fixed << setprecision(10);
	// if (fopen("file.in", "r"))
	// {
	// 	freopen ("file.in", "r", stdin);
	// 	freopen ("file.out", "w", stdout);
	// }
	cin >> N >> L;
	FOR(i, 0, N)
	{
		ll tot = 0;
		FOR(j, 0, L)
		{
			cin >> num[i][j];
			// DBG(num[i][j]);
			tot += num[i][j];
		}
		FOR(j, 0, L)
		{
			grid[i][j] = 1.0 * num[i][j] * N / tot;
			// cerr << grid[i][j] << ' ';
		}
		// cerr << endl;
	}
	ans.PB({0, 1});
	//try to minimize the amount accomplished in the time it takes!
	FOR(i, 0, N - 1)
	{
		FOR(j, 0, N)
		{
			taken[j] = 0.0;
		}
		pll p = ans.back();
		int iter = p.fi / p.se;
		// DBG(iter);
		// cerr << p.fi << ' ' << p.se << endl;
		pair<ld, int> best = {INF, N};
		while(iter < L)
		{
			//see what happens if you go all the way up to iter + 1!
			ld x = ((p.fi / p.se == iter) ? (1.0 * ((iter + 1) * (p.se) - p.fi) / p.se) : 1.0);
			FOR(j, 0, N)
			{
				if (inside[j]) continue;
				taken[j] += x * grid[j][iter];
				// DBG(taken[j]);
				if (taken[j] > 1.0 - EPS)
				{
					ckmin(best, {1.0 + iter - (taken[j] - 1.0) / grid[j][iter], j});
				}
			}
			if (best.se != N) break;
			iter++;
		}
		int idx = best.se;
		ord.PB(idx);
		inside[idx] = true;
		pll res;
		res.se = 4 * num[idx][iter] * N;
		res.fi = (ll) (best.fi * res.se + 1.0 - EPS);
		ans.PB(res);
		//smth out of grid[i][iter].fi
		//x / grid[i][iter].fi >= best.fi
		//x >= best.fi * grid[i][iter].fi
		//ok now find the guy who can use the least!
	}
	FOR(i, 0, N) if (!inside[i]) ord.PB(i);
	ans.erase(ans.begin());
	for (pll p : ans)
	{
		ll g = gcd(p.fi, p.se);
		p.fi /= g; p.se /= g;
		cout << p.fi << ' ' << p.se << '\n';
	}
	FOR(i, 0, SZ(ord))
	{
		if (i) cout << ' ';
		cout << ord[i] + 1;
	}
	cout << '\n';
	// cerr << "time elapsed = " << (clock() / (CLOCKS_PER_SEC / 1000)) << " ms" << endl;
	return 0;
}
/* READ READ READ
* int overflow, maxn too small, special cases (n=1?, two distinct?), cin.tie() interactive
* reread the problem, try small cases
* note down possible sources of error as you go
* do smth instead of nothing
*/
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 476 KB Output is correct
3 Correct 2 ms 504 KB Output is correct
4 Correct 3 ms 504 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 3 ms 376 KB Output is correct
7 Correct 2 ms 380 KB Output is correct
8 Correct 2 ms 508 KB Output is correct
9 Correct 2 ms 376 KB Output is correct
10 Correct 2 ms 504 KB Output is correct
11 Correct 2 ms 504 KB Output is correct
12 Correct 3 ms 408 KB Output is correct
13 Correct 3 ms 408 KB Output is correct
14 Correct 3 ms 504 KB Output is correct
15 Correct 3 ms 504 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 476 KB Output is correct
2 Correct 3 ms 504 KB Output is correct
3 Correct 3 ms 504 KB Output is correct
4 Correct 3 ms 632 KB Output is correct
5 Correct 3 ms 504 KB Output is correct
6 Correct 2 ms 504 KB Output is correct
7 Correct 2 ms 376 KB Output is correct
8 Correct 2 ms 508 KB Output is correct
9 Correct 3 ms 632 KB Output is correct
10 Correct 3 ms 668 KB Output is correct
11 Correct 3 ms 632 KB Output is correct
12 Correct 2 ms 376 KB Output is correct
13 Correct 3 ms 504 KB Output is correct
14 Correct 3 ms 632 KB Output is correct
15 Correct 3 ms 632 KB Output is correct
16 Correct 3 ms 632 KB Output is correct
17 Correct 5 ms 632 KB Output is correct
18 Correct 3 ms 636 KB Output is correct
19 Correct 3 ms 632 KB Output is correct
20 Correct 3 ms 676 KB Output is correct
21 Correct 4 ms 632 KB Output is correct
22 Correct 3 ms 632 KB Output is correct
23 Correct 2 ms 348 KB Output is correct
24 Correct 3 ms 540 KB Output is correct
25 Correct 3 ms 504 KB Output is correct
26 Correct 2 ms 504 KB Output is correct
27 Correct 3 ms 632 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 476 KB Output is correct
3 Correct 2 ms 504 KB Output is correct
4 Correct 3 ms 504 KB Output is correct
5 Correct 2 ms 376 KB Output is correct
6 Correct 3 ms 376 KB Output is correct
7 Correct 2 ms 380 KB Output is correct
8 Correct 2 ms 508 KB Output is correct
9 Correct 2 ms 376 KB Output is correct
10 Correct 2 ms 504 KB Output is correct
11 Correct 2 ms 504 KB Output is correct
12 Correct 3 ms 408 KB Output is correct
13 Correct 3 ms 408 KB Output is correct
14 Correct 3 ms 504 KB Output is correct
15 Correct 3 ms 504 KB Output is correct
16 Correct 2 ms 476 KB Output is correct
17 Correct 3 ms 504 KB Output is correct
18 Correct 3 ms 504 KB Output is correct
19 Correct 3 ms 632 KB Output is correct
20 Correct 3 ms 504 KB Output is correct
21 Correct 2 ms 504 KB Output is correct
22 Correct 2 ms 376 KB Output is correct
23 Correct 2 ms 508 KB Output is correct
24 Correct 3 ms 632 KB Output is correct
25 Correct 3 ms 668 KB Output is correct
26 Correct 3 ms 632 KB Output is correct
27 Correct 2 ms 376 KB Output is correct
28 Correct 3 ms 504 KB Output is correct
29 Correct 3 ms 632 KB Output is correct
30 Correct 3 ms 632 KB Output is correct
31 Correct 3 ms 632 KB Output is correct
32 Correct 5 ms 632 KB Output is correct
33 Correct 3 ms 636 KB Output is correct
34 Correct 3 ms 632 KB Output is correct
35 Correct 3 ms 676 KB Output is correct
36 Correct 4 ms 632 KB Output is correct
37 Correct 3 ms 632 KB Output is correct
38 Correct 2 ms 348 KB Output is correct
39 Correct 3 ms 540 KB Output is correct
40 Correct 3 ms 504 KB Output is correct
41 Correct 2 ms 504 KB Output is correct
42 Correct 3 ms 632 KB Output is correct
43 Correct 44 ms 12672 KB Output is correct
44 Correct 269 ms 61664 KB Output is correct
45 Correct 176 ms 40576 KB Output is correct
46 Correct 29 ms 7032 KB Output is correct
47 Correct 204 ms 49468 KB Output is correct
48 Correct 117 ms 37468 KB Output is correct
49 Correct 63 ms 20472 KB Output is correct
50 Correct 269 ms 81608 KB Output is correct
51 Correct 167 ms 51704 KB Output is correct
52 Correct 311 ms 88412 KB Output is correct
53 Correct 231 ms 72056 KB Output is correct
54 Correct 3 ms 632 KB Output is correct
55 Correct 45 ms 15736 KB Output is correct
56 Correct 211 ms 64632 KB Output is correct
57 Correct 189 ms 52984 KB Output is correct
58 Correct 255 ms 64376 KB Output is correct
59 Correct 225 ms 57364 KB Output is correct
60 Correct 581 ms 116984 KB Output is correct
61 Correct 587 ms 116800 KB Output is correct
62 Correct 592 ms 116632 KB Output is correct
63 Correct 591 ms 117116 KB Output is correct
64 Correct 610 ms 117112 KB Output is correct
65 Correct 436 ms 103672 KB Output is correct
66 Correct 442 ms 103732 KB Output is correct
67 Correct 457 ms 103736 KB Output is correct
68 Correct 219 ms 56184 KB Output is correct
69 Correct 271 ms 66400 KB Output is correct
70 Correct 240 ms 61304 KB Output is correct
71 Correct 382 ms 86776 KB Output is correct