답안 #112451

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
112451 2019-05-20T02:12:35 Z AngusRitossa Bitaro, who Leaps through Time (JOI19_timeleap) C++14
34 / 100
3000 ms 70436 KB
#include <bits/stdc++.h>
using namespace std;
#ifdef DEBUG
	#define D(x...) printf(x)
#else
	#define D(x...)
#endif
typedef long long ll;
typedef pair<pair<int, int>, pair<int, int> > piiii;
int n, q;
ll l[300010], r[300010];
piiii rangetree[300010*4];
pair<int, int> maxmin(pair<int, int> a, pair<int, int> b)
{
	if (a.first == b.first) return min(a, b);
	else return max(a, b);
}
void update(int node, pair<int, int> val, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (cstart == cend)
	{
		rangetree[curr] = { { val.first, node }, { val.second, node } };
		return;
	}
	int mid = (cstart+cend)/2;
	if (node <= mid) update(node, val, 2*curr, cstart, mid);
	else update(node, val, 2*curr+1, mid+1, cend);
	rangetree[curr].first = maxmin(rangetree[2*curr].first, rangetree[2*curr+1].first);
	rangetree[curr].second = min(rangetree[2*curr].second, rangetree[2*curr+1].second);
}
piiii save[300010*4];
int upto, seen[300010*4];
piiii query(int s, int e, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (s <= cstart && cend <= e) return rangetree[curr];
	if (seen[curr] == upto) return save[curr];
	seen[curr] = upto;
	int mid = (cstart+cend)/2;
	if (e <= mid) return save[curr] = query(s, e, 2*curr, cstart, mid);
	else if (s > mid) return save[curr] = query(s, e, 2*curr+1, mid+1, cend);
	else 
	{
		auto a = query(s, e, 2*curr, cstart, mid);
		auto b = query(s, e, 2*curr+1, mid+1, cend);
		return save[curr] = { maxmin(a.first, b.first), min(a.second, b.second) };
	}
}
int firstbefore(int node, int hei, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (cstart == cend) return cstart;
	int mid = (cstart+cend)/2;
	if (node-1 <= mid) return firstbefore(node, hei, 2*curr, cstart, mid);
	auto q = query(mid+1, node-1, 2*curr+1, mid+1, cend);
	if (q.first.first > hei || q.second.first < hei) return firstbefore(node, hei, 2*curr+1, mid+1, cend);
	else return firstbefore(node, hei, 2*curr, cstart, mid);
}
int firstafter(int node, int hei, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (cstart == cend) return cstart;
	int mid = (cstart+cend)/2;
	if (node >= mid) return firstafter(node, hei, 2*curr+1, mid+1, cend);
	auto q = query(node+1, mid, 2*curr, cstart, mid);
	if (q.first.first > hei || q.second.first < hei) return firstafter(node, hei, 2*curr, cstart, mid);
	else return firstafter(node, hei, 2*curr+1, mid+1, cend);
}
int firstbefore0(int node, int hei, bool checkl, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (cstart == cend) return cstart;
	int mid = (cstart+cend)/2;
	if (node-1 <= mid) return firstbefore0(node, hei, checkl, 2*curr, cstart, mid);
	auto q = query(mid+1, node-1, 2*curr+1, mid+1, cend);
	if (checkl) 
	{
		if (q.first.first >= hei || q.second.first < hei) return firstbefore0(node, hei, checkl, 2*curr+1, mid+1, cend);
	}
	else 
	{
		if (q.first.first > hei || q.second.first <= hei) return firstbefore0(node, hei, checkl, 2*curr+1, mid+1, cend);
	}
	return firstbefore0(node, hei, checkl, 2*curr, cstart, mid);
}
ll rt2[300010*4];
void upd2(int node, ll val, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (cstart == cend) 
	{
		rt2[curr] = val;
		return;
	}
	int mid = (cstart+cend)/2;
	if (node <= mid) upd2(node, val, 2*curr, cstart, mid);
	else upd2(node, val, 2*curr+1, mid+1, cend);
	rt2[curr] = rt2[2*curr]+rt2[2*curr+1];
}
ll qu2(int s, int e, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (s <= cstart && cend <= e) return rt2[curr];
	int mid = (cstart+cend)/2;
	if (e <= mid) return qu2(s, e, 2*curr, cstart, mid);
	else if (s > mid) return qu2(s, e, 2*curr+1, mid+1, cend);
	else return qu2(s, e, 2*curr, cstart, mid)+qu2(s, e, 2*curr+1, mid+1, cend);
}
pair<int, int> firstonleft(int a, int hei)
{
	upto++;
	int s = firstbefore(a, hei);
	int type = l[s] > hei; // if 1 above, if 0 below
	return { s, type };
}
bool firstonleftactually0(int a, int hei, bool checkl)
{
	upto++;
	int s = firstbefore0(a, hei, checkl);
	if (checkl) return l[s] == hei;
	else return r[s] == hei;
}
pair<int, int> firstonright(int a, int hei)
{
	upto++;
	int s = firstafter(a, hei);
	int type = l[s] > hei; // if 1 above, if 0 below
	return { s, type };
}
set<pair<int, int> > mnmx;
void checkforlocalstuff(int a)
{
	// Check if l is local max
	upd2(a, 0);
	if (!firstonleft(a, l[a]).second && !firstonright(a, l[a]).second && !firstonleftactually0(a, l[a], 1)) 
	{
		D("local max %d\n", a);
		mnmx.insert({a, 0});
		mnmx.erase({a, 1});
		upd2(a, l[a]);
	}
	else
	{
		mnmx.erase({a, 0});
		if (firstonleft(a, r[a]).second && firstonright(a, r[a]).second && !firstonleftactually0(a, r[a], 0)) 
		{
			D("local min %d\n", a);
			mnmx.insert({a, 1});
			upd2(a, -r[a]);
		}
		else
		{
			mnmx.erase({a, 1});
		}
	}
	// Check if r is local min
}
ll A[300010], B[300010], C[300010], D[300010], T[300010], L[300010], R[300010], ANS[300010];
void dothing(bool reverse)
{
	mnmx.clear();
	for (int i = 1; i < n; i++) 
	{
		l[i] = L[i], r[i] = R[i];
		if (reverse) l[i] = L[n-i], r[i] = R[n-i];
		l[i]-=i;
		r[i]-=i+1;
		D("%lld %lld\n", l[i], r[i]);
		update(i, { l[i], r[i] });
	}
	update(0, { 2e9, -2e9 });
	update(n, { 2e9, -2e9 });
	// Find local max and mins
	for (int i = 1; i < n; i++)
	{
		checkforlocalstuff(i);
	}
	for (int i = 0; i < q; i++)
	{
		ll t, a, b, c, d;
		t = T[i];
		if (t == 1)
		{
			ll a = A[i], x = B[i], y = C[i];
			if (reverse) a = n-a;
			l[a] = x-a, r[a] = y-a-1;
			update(a, { l[a], r[a] });
			// update me
			checkforlocalstuff(a);
			// check thing before me
			if (a != 1)
			{
				auto it = mnmx.lower_bound({a, 0});
				int thing = 1;
				if (it != mnmx.begin()) thing = prev(it)->first;
				upto++;
				auto q = query(thing, a-1);
				checkforlocalstuff(q.first.second);
				checkforlocalstuff(q.second.second);
			}
			if (a != n-1)
			{
				auto it = mnmx.lower_bound({a, 2});
				int thing = n-1;
				if (it != mnmx.end()) thing = it->first;
				upto++;
				auto q = query(a+1, thing);
				checkforlocalstuff(q.first.second);
				checkforlocalstuff(q.second.second);
			}
			continue;
		}
		a = A[i], b = B[i], c = C[i], d = D[i];
		if (a > c && !reverse) continue;
		if (reverse)
		{
			if (a <= c) continue;
			a = n-a+1, c = n-c+1;
		} 
		b-=a, d-=c;
		if (a == c)
		{
			ANS[i] = max(0ll, b-d);
			continue;
		}
		ll am = 0;
		if (b < l[a]) b = l[a];
		if (b > r[a]) am += b-r[a], b = r[a];
		D("b %lld d %lld am %lld\n", b, d, am);
		// find first occuring secondhalf local thingo 
		auto it = mnmx.lower_bound({a, -1});
		if (it == mnmx.end() || it->first >= c)
		{
			// There are none in between
			upto++;
			auto q = query(a, c-1);
			auto mn = q.second; // mn top
			auto mx = q.first; // mx bot
			ll currloc = b;
			ll ans = am;
			if (mn.second < mx.second)
			{
				// go down to mn if its below
				if (mn.first < currloc)
				{
					ans += currloc-mn.first;
					currloc = mn.first;
				}
				// go up to mx if its above
				currloc = max(currloc, (ll)mx.first);
				// go down to end
				ans += max(0ll, currloc-d);
			}
			else
			{
				// go up to mx if its above
				currloc = max(currloc, (ll)mx.first);
				// go down to mn if its below
				if (mn.first < currloc)
				{
					ans += currloc-mn.first;
					currloc = mn.first;
				}
				// go down to end
				ans += max(0ll, currloc-d);
			}
			D("none between: ");
			ANS[i] = ans;
		}
		else
		{
			auto it2 = prev(mnmx.lower_bound({ c, -1 }));
			ll ans = am;
			if (it == it2)
			{
				// one in between
				if (it->second) // Local min
				{
					upto++;
					ll mxbefore = query(a, it->first).first.first;
					mxbefore = max(mxbefore, b);
					upto++;
					ll mxafter = query(it->first, c-1).first.first;
					mxafter = max(mxafter, d);
					// move down to the local mn if needed
					ll pos = mxbefore;
					ll lmnheight = r[it->first];
					if (lmnheight < pos) ans += pos-lmnheight, pos = lmnheight;
					// move down/up to mx after
					ans += max(0ll, pos-mxafter);
					pos = mxafter;
					// move up/down to end
					ans += max(0ll, pos-d);
				}
				else // Local max
				{
					upto++;
					ll mnbefore = query(a, it->first).second.first;
					mnbefore = min(mnbefore, b);
					upto++;
					ll mnafter = query(it->first, c-1).second.first;
					mnafter = min(mnafter, d);
					// move down to first thing
					ll pos = b;
					ans += pos-mnbefore;
					pos = mnbefore;
					// go up to local max if needed
					pos = max(pos, l[it->first]);
					ans += max(0ll, pos-mnafter);					
				}
				D("one between: ");
				ANS[i] = ans;
			}
			else
			{
				// two in between
				if (it->second) // first is local min
				{
					upto++;
					ll mxbefore = query(a, it->first).first.first;
					mxbefore = max(mxbefore, b);
					mxbefore = max(mxbefore, r[it->first]);
					ans += mxbefore;
				}
				else // first is local max
				{
					upto++;
					ll mnbefore = query(a, it->first).second.first;
					mnbefore = min(mnbefore, b);
					mnbefore = min(mnbefore, l[it->first]);
					ans += b-mnbefore;
				}
				if (it2->second) // last is local min
				{
					upto++;
					ll mxbefore = query(it2->first, c-1).first.first;
					mxbefore = max(mxbefore, d);
					mxbefore = max(mxbefore, r[it2->first]);
					ans += mxbefore-d;
				}
				else // last is local max
				{
					upto++;
					ll mnbefore = query(it2->first, c-1).second.first;
					mnbefore = min(mnbefore, d);
					mnbefore = min(mnbefore, l[it2->first]);
					ans -= mnbefore;
				}
				ans += qu2(a, c-1);
				D(">1 between: ");
				ANS[i] = ans;
			}
		}
	}
}
int main()
{
	scanf("%d%d", &n, &q);
	for (int i = 1; i < n; i++) scanf("%lld%lld", &L[i], &R[i]);
	for (int i = 0; i < q; i++)
	{
		scanf("%lld", &T[i]);
		if (T[i] == 1) scanf("%lld%lld%lld", &A[i], &B[i], &C[i]);
		else scanf("%lld%lld%lld%lld", &A[i], &B[i], &C[i], &D[i]);
	}
	dothing(0);
	dothing(1);
	for (int i = 0; i < q; i++)
	{
		if (T[i] == 2) printf("%lld\n", ANS[i]);
	}
}

Compilation message

timeleap.cpp: In function 'int main()':
timeleap.cpp:352:7: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
  scanf("%d%d", &n, &q);
  ~~~~~^~~~~~~~~~~~~~~~
timeleap.cpp:353:35: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
  for (int i = 1; i < n; i++) scanf("%lld%lld", &L[i], &R[i]);
                              ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~
timeleap.cpp:356:8: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   scanf("%lld", &T[i]);
   ~~~~~^~~~~~~~~~~~~~~
timeleap.cpp:357:23: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   if (T[i] == 1) scanf("%lld%lld%lld", &A[i], &B[i], &C[i]);
                  ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
timeleap.cpp:358:13: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   else scanf("%lld%lld%lld%lld", &A[i], &B[i], &C[i], &D[i]);
        ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 640 KB Output is correct
2 Correct 2 ms 640 KB Output is correct
3 Correct 3 ms 640 KB Output is correct
4 Correct 2 ms 640 KB Output is correct
5 Correct 2 ms 640 KB Output is correct
6 Correct 2 ms 640 KB Output is correct
7 Correct 2 ms 640 KB Output is correct
8 Correct 3 ms 640 KB Output is correct
9 Correct 2 ms 640 KB Output is correct
10 Correct 2 ms 640 KB Output is correct
11 Correct 13 ms 768 KB Output is correct
12 Correct 13 ms 896 KB Output is correct
13 Correct 13 ms 768 KB Output is correct
14 Correct 13 ms 896 KB Output is correct
15 Correct 13 ms 896 KB Output is correct
16 Correct 12 ms 896 KB Output is correct
17 Correct 13 ms 920 KB Output is correct
18 Correct 13 ms 896 KB Output is correct
19 Correct 12 ms 896 KB Output is correct
20 Correct 13 ms 896 KB Output is correct
21 Correct 14 ms 868 KB Output is correct
22 Correct 12 ms 896 KB Output is correct
23 Correct 13 ms 896 KB Output is correct
24 Correct 13 ms 896 KB Output is correct
25 Correct 14 ms 896 KB Output is correct
26 Correct 14 ms 916 KB Output is correct
27 Correct 14 ms 896 KB Output is correct
28 Correct 13 ms 896 KB Output is correct
29 Correct 13 ms 936 KB Output is correct
30 Correct 14 ms 896 KB Output is correct
31 Correct 13 ms 896 KB Output is correct
32 Correct 13 ms 768 KB Output is correct
33 Correct 13 ms 768 KB Output is correct
34 Correct 12 ms 768 KB Output is correct
35 Correct 12 ms 768 KB Output is correct
36 Correct 13 ms 768 KB Output is correct
37 Correct 12 ms 768 KB Output is correct
38 Correct 12 ms 896 KB Output is correct
39 Correct 12 ms 768 KB Output is correct
40 Correct 13 ms 896 KB Output is correct
41 Correct 1 ms 384 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2376 ms 64012 KB Output is correct
2 Correct 2299 ms 61348 KB Output is correct
3 Correct 2274 ms 61692 KB Output is correct
4 Correct 2164 ms 60344 KB Output is correct
5 Correct 2288 ms 63668 KB Output is correct
6 Correct 2257 ms 62944 KB Output is correct
7 Correct 2479 ms 68340 KB Output is correct
8 Correct 2661 ms 70436 KB Output is correct
9 Correct 2371 ms 64268 KB Output is correct
10 Correct 2292 ms 64224 KB Output is correct
11 Correct 2303 ms 63912 KB Output is correct
12 Correct 2391 ms 67312 KB Output is correct
13 Correct 2427 ms 68000 KB Output is correct
14 Correct 2 ms 384 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 640 KB Output is correct
2 Correct 2 ms 640 KB Output is correct
3 Correct 3 ms 640 KB Output is correct
4 Correct 2 ms 640 KB Output is correct
5 Correct 2 ms 640 KB Output is correct
6 Correct 2 ms 640 KB Output is correct
7 Correct 2 ms 640 KB Output is correct
8 Correct 3 ms 640 KB Output is correct
9 Correct 2 ms 640 KB Output is correct
10 Correct 2 ms 640 KB Output is correct
11 Correct 13 ms 768 KB Output is correct
12 Correct 13 ms 896 KB Output is correct
13 Correct 13 ms 768 KB Output is correct
14 Correct 13 ms 896 KB Output is correct
15 Correct 13 ms 896 KB Output is correct
16 Correct 12 ms 896 KB Output is correct
17 Correct 13 ms 920 KB Output is correct
18 Correct 13 ms 896 KB Output is correct
19 Correct 12 ms 896 KB Output is correct
20 Correct 13 ms 896 KB Output is correct
21 Correct 14 ms 868 KB Output is correct
22 Correct 12 ms 896 KB Output is correct
23 Correct 13 ms 896 KB Output is correct
24 Correct 13 ms 896 KB Output is correct
25 Correct 14 ms 896 KB Output is correct
26 Correct 14 ms 916 KB Output is correct
27 Correct 14 ms 896 KB Output is correct
28 Correct 13 ms 896 KB Output is correct
29 Correct 13 ms 936 KB Output is correct
30 Correct 14 ms 896 KB Output is correct
31 Correct 13 ms 896 KB Output is correct
32 Correct 13 ms 768 KB Output is correct
33 Correct 13 ms 768 KB Output is correct
34 Correct 12 ms 768 KB Output is correct
35 Correct 12 ms 768 KB Output is correct
36 Correct 13 ms 768 KB Output is correct
37 Correct 12 ms 768 KB Output is correct
38 Correct 12 ms 896 KB Output is correct
39 Correct 12 ms 768 KB Output is correct
40 Correct 13 ms 896 KB Output is correct
41 Correct 1 ms 384 KB Output is correct
42 Correct 2376 ms 64012 KB Output is correct
43 Correct 2299 ms 61348 KB Output is correct
44 Correct 2274 ms 61692 KB Output is correct
45 Correct 2164 ms 60344 KB Output is correct
46 Correct 2288 ms 63668 KB Output is correct
47 Correct 2257 ms 62944 KB Output is correct
48 Correct 2479 ms 68340 KB Output is correct
49 Correct 2661 ms 70436 KB Output is correct
50 Correct 2371 ms 64268 KB Output is correct
51 Correct 2292 ms 64224 KB Output is correct
52 Correct 2303 ms 63912 KB Output is correct
53 Correct 2391 ms 67312 KB Output is correct
54 Correct 2427 ms 68000 KB Output is correct
55 Correct 2 ms 384 KB Output is correct
56 Execution timed out 3050 ms 59216 KB Time limit exceeded
57 Halted 0 ms 0 KB -