Submission #1117912

# Submission time Handle Problem Language Result Execution time Memory
1117912 2024-11-24T09:54:32 Z whatthemomooofun1729 Tug of War (BOI15_tug) C++17
18 / 100
452 ms 6604 KB
#include <iostream>
#include <algorithm>
#include <utility>
#include <vector>
#include <stack>
#include <map>
#include <queue>
#include <set>
#include <unordered_set>
#include <unordered_map>
#include <cstring>
#include <cmath>
#include <functional>
#include <cassert>
#include <iomanip>
#include <numeric>
#include <bitset>
#include <sstream>
#include <chrono>
#include <random>

#define ff first
#define ss second
#define PB push_back
#define sz(x) int(x.size())
#define rsz resize
#define fch(xxx, yyy) for (auto xxx : yyy) // abusive notation
#define all(x) (x).begin(),(x).end()
#define eps 1e-9

// more abusive notation (use at your own risk):
// #define int ll

using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using vi = vector<int>;
using vll = vector<ll>;

// debugging
void __print(int x) {std::cerr << x;}
void __print(ll x) {std::cerr << x;} /* remember to uncomment this when not using THE MACRO */
void __print(unsigned x) {std::cerr << x;}
void __print(ull x) {std::cerr << x;}
void __print(float x) {std::cerr << x;}
void __print(double x) {std::cerr << x;}
void __print(ld x) {std::cerr << x;}
void __print(char x) {std::cerr << '\'' << x << '\'';}
void __print(const char *x) {std::cerr << '\"' << x << '\"';}
void __print(const string& x) {std::cerr << '\"' << x << '\"';}
void __print(bool x) {cerr << (x ? "true" : "false");}
template<typename T, typename V> void __print(const pair<T, V> &x) {std::cerr << '{'; __print(x.ff); std::cerr << ", "; __print(x.ss); std::cerr << '}';}
template<typename T> void __print(const T& x) {int f = 0; std::cerr << '{'; for (auto &i: x) std::cerr << (f++ ? ", " : ""), __print(i); std::cerr << "}";}
void _print() {std::cerr << "]\n";}
template <typename T, typename... V> void _print(T t, V... v) {__print(t); if (sizeof...(v)) std::cerr << ", "; _print(v...);}
void println() {std::cerr << ">--------------------<" << endl;}
#ifndef ONLINE_JUDGE
#define debug(x...) cerr << "[" << #x << "] = ["; _print(x)
#else
#define debug(x...)
#endif

// templates
template <class T> bool ckmin(T &a, const T &b) {return b<a ? a = b, 1 : 0;}
template <class T> bool ckmax(T &a, const T &b) {return b>a ? a = b, 1 : 0;}
template <class T> using gr = greater<T>;
template <class T> using vc = vector<T>;
template <class T> using p_q = priority_queue<T>;
template <class T> using pqg = priority_queue<T, vc<T>, gr<T>>;
template <class T1, class T2> using pr = pair<T1, T2>;
mt19937_64 rng_ll(chrono::steady_clock::now().time_since_epoch().count());
int rng(int M) {return (int)(rng_ll()%M);} /*returns any random number in [0, M) */

// const variables
constexpr int INF = (int)2e9;
constexpr int MOD = 998244353;
constexpr long double EPS = (ld)1e-10, PI = 3.1415926535;
constexpr ll LL_INF = (ll)3e18;
constexpr int mod = (int)1e9 + 7;
constexpr ll inverse = 500000004LL; // inverse of 2 modulo 1e9 + 7

void setIO(const string& str) {// fast input/output
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    if (str.empty()) return;
    freopen((str + ".in").c_str(), "r", stdin);
    freopen((str + ".out").c_str(), "w", stdout);
}

const int MAXN = int(3e4) + 5;
const int MAXK = int(40 * MAXN) + 5;
int N, K;
vc<pii> adj[MAXN * 2];
map<pii, vi> mp;
int deg[MAXN * 2], cc[MAXN * 2], edges[MAXN * 2], siz[MAXN * 2];
pii parent[MAXN * 2];
bitset<MAXK> dp1, dp2; // DP values: use the index trick
vi d;
vc<pii> v;
int sum = 0;
int cycle_end, cycle_start, final_edge;

int solve() {
    //debug("solving");
    int D = sz(d);
    if (D == 0) {
        return abs(sum) <= K;
    }
    dp1[d[0] + 20 * N] = dp2[-d[0] + 20 * N] = true; // base cases
    for (int i = 1; i < D; ++i) {
        dp2 = (dp1 << d[i]) | (dp1 >> d[i]);
        swap(dp2, dp1);
    }
    for (int i = 0; i <= 40 * N; ++i) {
        int sba = i - 20 * N;
        if (dp1[i] && abs(sba + sum) <= K) { // testing to see if a solution exists
            return 1;
        }
    }
    return 0;
}

void dfs1(int u) {
    //debug(u);
    fch(to, adj[u]) {
        if (cc[to.ff] != -1) continue;
        cc[to.ff] = cc[u];
        siz[cc[u]]++;
        dfs1(to.ff);
    }
}

void conn_comp() {
    for (int i = 1; i <= 2 * N; ++i) {
        cc[i] = -1;
    }
    for (int i = 1; i <= 2 * N; ++i) {
        if (cc[i] == -1) {
            cc[i] = i;
            siz[i] = 1;
            dfs1(i);
        }
    }
}

bool dfs(int u, int par) {
    //debug(u, par);
    deg[u] = 0;
    fch(to, adj[u]) {
        if (to.ff == par) continue; // skipping edge to parent vertex
        if (deg[to.ff] == 0) {
            cycle_end = u;
            cycle_start = to.ff;
            final_edge = to.ss;
            return true;
        }
        parent[to.ff] = {u, to.ss};
        if (dfs(to.ff, parent[to.ff].ff))
            return true;
    }
    return false;
}

signed main() { // TIME YOURSELF !!!
    setIO("");
    cin >> N >> K;
    for (int i = 0; i < 2 * N; ++i) {
        int l, r, s;
        cin >> l >> r >> s;
        r += N;
        adj[l].PB({r, s});
        adj[r].PB({l, s});
        mp[{l, r}].PB(s);
        deg[l]++, deg[r]++;
        v.PB({l, r});
        parent[i+1] = {-1, -1}; // just setting all of the values in parent[i] to -1
    }
    conn_comp();
    for (int i = 0; i < sz(v); ++i) {
        edges[cc[v[i].ff]]++;
    }
    for (int i = 1; i <= 2 * N; ++i) {
        if (edges[cc[i]] < siz[cc[i]]) {
            cout << "NO";
            return 0;
        }
    }
    queue<int> q;
    for (int i = 1; i <= 2 * N; ++i) {
        if (sz(adj[i]) == 1) {
            q.push(i);
            deg[i] = 0;
        }
    }
    while (!q.empty()) {
        int u = q.front();
        q.pop();
        //debug(u);
        fch(to, adj[u]) {
            if (deg[to.ff] == 0) continue;
            sum += (u <= N ? -1 : 1) * to.ss;
            //debug((u <= N ? -1 : 1) * to.ss);
            deg[to.ff]--;
            if (deg[to.ff] == 1) q.push(to.ff);
        }
    }
    for (auto i = mp.begin(); i != mp.end(); i++) {
        if (sz(i->ss) == 2) {
            int A = (i->ss)[0], B = (i->ss)[1];
            d.PB(abs(-A + B));
            deg[(i->ff).ff] = deg[(i->ff).ss] = 0;
        }
    }
    for (int i = 1; i <= 2 * N; ++i) {
        if (deg[i] == 2) {
            int S = 0, bit = 0;
            deg[i] = 0;
            dfs(i, parent[i].ff);
            //debug(cycle_end, cycle_start);
            for (int u = cycle_end; u != cycle_start; u = parent[u].ff, bit ^= 1) {
                S += (bit == 0 ? -1 : 1) * parent[u].ss;
                //debug(parent[u].ss);
                if (u == cycle_start) break;
            }
            //debug(final_edge);
            S += (bit == 0 ? -1 : 1) * final_edge;
            d.PB(abs(S));
        }
    }
//    debug(sum);
//    debug(d);
    cout << (solve() == 1 ? "YES" : "NO");
    return 0;
}

// TLE -> TRY NOT USING DEFINE INT LONG LONG
// CE -> CHECK LINE 45
// 5000 * 5000 size matrices are kinda big (potential mle)
// Do something, start simpler

Compilation message

tug.cpp: In function 'void setIO(const string&)':
tug.cpp:89:12: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
   89 |     freopen((str + ".in").c_str(), "r", stdin);
      |     ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
tug.cpp:90:12: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
   90 |     freopen((str + ".out").c_str(), "w", stdout);
      |     ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 3920 KB Output is correct
2 Correct 2 ms 3920 KB Output is correct
3 Correct 2 ms 3920 KB Output is correct
4 Correct 3 ms 3920 KB Output is correct
5 Correct 3 ms 3920 KB Output is correct
6 Correct 2 ms 3920 KB Output is correct
7 Correct 3 ms 3920 KB Output is correct
8 Correct 2 ms 3920 KB Output is correct
9 Correct 3 ms 3920 KB Output is correct
10 Correct 2 ms 3920 KB Output is correct
11 Correct 3 ms 3920 KB Output is correct
12 Correct 4 ms 3972 KB Output is correct
13 Correct 3 ms 3920 KB Output is correct
14 Correct 3 ms 3920 KB Output is correct
15 Correct 3 ms 3920 KB Output is correct
16 Correct 2 ms 3920 KB Output is correct
17 Correct 3 ms 3920 KB Output is correct
18 Correct 3 ms 3920 KB Output is correct
19 Correct 3 ms 3920 KB Output is correct
20 Correct 3 ms 3920 KB Output is correct
21 Correct 1 ms 3152 KB Output is correct
22 Correct 2 ms 3920 KB Output is correct
23 Correct 4 ms 3920 KB Output is correct
24 Correct 2 ms 3920 KB Output is correct
25 Correct 2 ms 3920 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 3920 KB Output is correct
2 Correct 2 ms 3920 KB Output is correct
3 Correct 2 ms 3920 KB Output is correct
4 Correct 3 ms 3920 KB Output is correct
5 Correct 3 ms 3920 KB Output is correct
6 Correct 2 ms 3920 KB Output is correct
7 Correct 3 ms 3920 KB Output is correct
8 Correct 2 ms 3920 KB Output is correct
9 Correct 3 ms 3920 KB Output is correct
10 Correct 2 ms 3920 KB Output is correct
11 Correct 3 ms 3920 KB Output is correct
12 Correct 4 ms 3972 KB Output is correct
13 Correct 3 ms 3920 KB Output is correct
14 Correct 3 ms 3920 KB Output is correct
15 Correct 3 ms 3920 KB Output is correct
16 Correct 2 ms 3920 KB Output is correct
17 Correct 3 ms 3920 KB Output is correct
18 Correct 3 ms 3920 KB Output is correct
19 Correct 3 ms 3920 KB Output is correct
20 Correct 3 ms 3920 KB Output is correct
21 Correct 1 ms 3152 KB Output is correct
22 Correct 2 ms 3920 KB Output is correct
23 Correct 4 ms 3920 KB Output is correct
24 Correct 2 ms 3920 KB Output is correct
25 Correct 2 ms 3920 KB Output is correct
26 Correct 138 ms 4384 KB Output is correct
27 Correct 24 ms 4604 KB Output is correct
28 Correct 133 ms 4176 KB Output is correct
29 Correct 22 ms 4620 KB Output is correct
30 Correct 160 ms 4176 KB Output is correct
31 Correct 23 ms 4432 KB Output is correct
32 Correct 130 ms 4396 KB Output is correct
33 Correct 21 ms 4608 KB Output is correct
34 Correct 13 ms 4432 KB Output is correct
35 Correct 21 ms 4608 KB Output is correct
36 Correct 134 ms 4176 KB Output is correct
37 Correct 22 ms 4432 KB Output is correct
38 Correct 134 ms 4176 KB Output is correct
39 Correct 23 ms 4616 KB Output is correct
40 Correct 135 ms 4176 KB Output is correct
41 Correct 23 ms 4432 KB Output is correct
42 Correct 133 ms 4348 KB Output is correct
43 Correct 22 ms 4432 KB Output is correct
44 Correct 145 ms 4396 KB Output is correct
45 Correct 23 ms 4432 KB Output is correct
46 Correct 171 ms 4176 KB Output is correct
47 Correct 4 ms 3920 KB Output is correct
48 Correct 71 ms 4432 KB Output is correct
49 Incorrect 83 ms 4432 KB Output isn't correct
50 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 412 ms 5836 KB Output is correct
2 Correct 15 ms 6348 KB Output is correct
3 Correct 451 ms 5980 KB Output is correct
4 Correct 16 ms 6280 KB Output is correct
5 Correct 426 ms 5836 KB Output is correct
6 Correct 17 ms 6348 KB Output is correct
7 Correct 420 ms 5836 KB Output is correct
8 Correct 18 ms 6348 KB Output is correct
9 Correct 430 ms 5836 KB Output is correct
10 Correct 14 ms 6348 KB Output is correct
11 Correct 426 ms 5848 KB Output is correct
12 Correct 14 ms 6348 KB Output is correct
13 Correct 452 ms 5968 KB Output is correct
14 Correct 418 ms 5836 KB Output is correct
15 Correct 14 ms 6348 KB Output is correct
16 Correct 420 ms 5848 KB Output is correct
17 Correct 13 ms 6348 KB Output is correct
18 Correct 448 ms 5836 KB Output is correct
19 Correct 14 ms 6348 KB Output is correct
20 Correct 407 ms 5804 KB Output is correct
21 Correct 13 ms 6092 KB Output is correct
22 Incorrect 223 ms 6604 KB Output isn't correct
23 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 3920 KB Output is correct
2 Correct 2 ms 3920 KB Output is correct
3 Correct 2 ms 3920 KB Output is correct
4 Correct 3 ms 3920 KB Output is correct
5 Correct 3 ms 3920 KB Output is correct
6 Correct 2 ms 3920 KB Output is correct
7 Correct 3 ms 3920 KB Output is correct
8 Correct 2 ms 3920 KB Output is correct
9 Correct 3 ms 3920 KB Output is correct
10 Correct 2 ms 3920 KB Output is correct
11 Correct 3 ms 3920 KB Output is correct
12 Correct 4 ms 3972 KB Output is correct
13 Correct 3 ms 3920 KB Output is correct
14 Correct 3 ms 3920 KB Output is correct
15 Correct 3 ms 3920 KB Output is correct
16 Correct 2 ms 3920 KB Output is correct
17 Correct 3 ms 3920 KB Output is correct
18 Correct 3 ms 3920 KB Output is correct
19 Correct 3 ms 3920 KB Output is correct
20 Correct 3 ms 3920 KB Output is correct
21 Correct 1 ms 3152 KB Output is correct
22 Correct 2 ms 3920 KB Output is correct
23 Correct 4 ms 3920 KB Output is correct
24 Correct 2 ms 3920 KB Output is correct
25 Correct 2 ms 3920 KB Output is correct
26 Correct 138 ms 4384 KB Output is correct
27 Correct 24 ms 4604 KB Output is correct
28 Correct 133 ms 4176 KB Output is correct
29 Correct 22 ms 4620 KB Output is correct
30 Correct 160 ms 4176 KB Output is correct
31 Correct 23 ms 4432 KB Output is correct
32 Correct 130 ms 4396 KB Output is correct
33 Correct 21 ms 4608 KB Output is correct
34 Correct 13 ms 4432 KB Output is correct
35 Correct 21 ms 4608 KB Output is correct
36 Correct 134 ms 4176 KB Output is correct
37 Correct 22 ms 4432 KB Output is correct
38 Correct 134 ms 4176 KB Output is correct
39 Correct 23 ms 4616 KB Output is correct
40 Correct 135 ms 4176 KB Output is correct
41 Correct 23 ms 4432 KB Output is correct
42 Correct 133 ms 4348 KB Output is correct
43 Correct 22 ms 4432 KB Output is correct
44 Correct 145 ms 4396 KB Output is correct
45 Correct 23 ms 4432 KB Output is correct
46 Correct 171 ms 4176 KB Output is correct
47 Correct 4 ms 3920 KB Output is correct
48 Correct 71 ms 4432 KB Output is correct
49 Incorrect 83 ms 4432 KB Output isn't correct
50 Halted 0 ms 0 KB -