#include <bits/stdc++.h>
using namespace std;
// base and base_digits must be consistent
const long long base = 1e9;
const int base_digits = 9;
struct bigint {
vector<long long> a;
int sign;
bigint() :
sign(1) {
}
bigint(long long v) {
*this = v;
}
bigint(const string &s) {
read(s);
}
void operator=(const bigint &v) {
sign = v.sign;
a = v.a;
}
void operator=(long long v) {
sign = 1;
if (v < 0)
sign = -1, v = -v;
for (; v > 0; v = v / base)
a.push_back(v % base);
}
bigint operator+(const bigint &v) const {
if (sign == v.sign) {
bigint res = v;
for (long long i = 0, carry = 0; i < (long long) max(a.size(), v.a.size()) || carry; ++i) {
if (i == (long long) res.a.size())
res.a.push_back(0);
res.a[i] += carry + (i < (long long) a.size() ? a[i] : 0);
carry = res.a[i] >= base;
if (carry)
res.a[i] -= base;
}
return res;
}
return *this - (-v);
}
bigint operator-(const bigint &v) const {
if (sign == v.sign) {
if (abs() >= v.abs()) {
bigint res = *this;
for (long long i = 0, carry = 0; i < (long long) v.a.size() || carry; ++i) {
res.a[i] -= carry + (i < (long long) v.a.size() ? v.a[i] : 0);
carry = res.a[i] < 0;
if (carry)
res.a[i] += base;
}
res.trim();
return res;
}
return -(v - *this);
}
return *this + (-v);
}
void operator*=(long long v) {
if (v < 0)
sign = -sign, v = -v;
for (long long i = 0, carry = 0; i < (long long) a.size() || carry; ++i) {
if (i == (long long) a.size())
a.push_back(0);
long long cur = a[i] * (long long) v + carry;
carry = (long long) (cur / base);
a[i] = (long long) (cur % base);
//asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base));
}
trim();
}
bigint operator*(long long v) const {
bigint res = *this;
res *= v;
return res;
}
friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) {
long long norm = base / (b1.a.back() + 1);
bigint a = a1.abs() * norm;
bigint b = b1.abs() * norm;
bigint q, r;
q.a.resize(a.a.size());
for (long long i = a.a.size() - 1; i >= 0; i--) {
r *= base;
r += a.a[i];
long long s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()];
long long s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1];
long long d = ((long long) base * s1 + s2) / b.a.back();
r -= b * d;
while (r < 0)
r += b, --d;
q.a[i] = d;
}
q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
return make_pair(q, r / norm);
}
bigint operator/(const bigint &v) const {
return divmod(*this, v).first;
}
bigint operator%(const bigint &v) const {
return divmod(*this, v).second;
}
void operator/=(long long v) {
if (v < 0)
sign = -sign, v = -v;
for (long long i = (long long) a.size() - 1, rem = 0; i >= 0; --i) {
long long cur = a[i] + rem * (long long) base;
a[i] = (long long) (cur / v);
rem = (long long) (cur % v);
}
trim();
}
bigint operator/(long long v) const {
bigint res = *this;
res /= v;
return res;
}
long long operator%(long long v) const {
if (v < 0)
v = -v;
long long m = 0;
for (long long i = a.size() - 1; i >= 0; --i)
m = (a[i] + m * (long long) base) % v;
return m * sign;
}
void operator+=(const bigint &v) {
*this = *this + v;
}
void operator-=(const bigint &v) {
*this = *this - v;
}
void operator*=(const bigint &v) {
*this = *this * v;
}
void operator/=(const bigint &v) {
*this = *this / v;
}
bool operator<(const bigint &v) const {
if (sign != v.sign)
return sign < v.sign;
if (a.size() != v.a.size())
return a.size() * sign < v.a.size() * v.sign;
for (long long i = a.size() - 1; i >= 0; i--)
if (a[i] != v.a[i])
return a[i] * sign < v.a[i] * sign;
return false;
}
bool operator>(const bigint &v) const {
return v < *this;
}
bool operator<=(const bigint &v) const {
return !(v < *this);
}
bool operator>=(const bigint &v) const {
return !(*this < v);
}
bool operator==(const bigint &v) const {
return !(*this < v) && !(v < *this);
}
bool operator!=(const bigint &v) const {
return *this < v || v < *this;
}
void trim() {
while (!a.empty() && !a.back())
a.pop_back();
if (a.empty())
sign = 1;
}
bool isZero() const {
return a.empty() || (a.size() == 1 && !a[0]);
}
bigint operator-() const {
bigint res = *this;
res.sign = -sign;
return res;
}
bigint abs() const {
bigint res = *this;
res.sign *= res.sign;
return res;
}
long long longValue() const {
long long res = 0;
for (long long i = a.size() - 1; i >= 0; i--)
res = res * base + a[i];
return res * sign;
}
friend bigint gcd(const bigint &a, const bigint &b) {
return b.isZero() ? a : gcd(b, a % b);
}
friend bigint lcm(const bigint &a, const bigint &b) {
return a / gcd(a, b) * b;
}
void read(const string &s) {
sign = 1;
a.clear();
long long pos = 0;
while (pos < (long long) s.size() && (s[pos] == '-' || s[pos] == '+')) {
if (s[pos] == '-')
sign = -sign;
++pos;
}
for (long long i = s.size() - 1; i >= pos; i -= base_digits) {
long long x = 0;
for (long long j = max(pos, i - base_digits + 1); j <= i; j++)
x = x * 10 + s[j] - '0';
a.push_back(x);
}
trim();
}
friend istream& operator>>(istream &stream, bigint &v) {
string s;
stream >> s;
v.read(s);
return stream;
}
friend ostream& operator<<(ostream &stream, const bigint &v) {
if (v.sign == -1)
stream << '-';
stream << (v.a.empty() ? 0 : v.a.back());
for (long long i = (long long) v.a.size() - 2; i >= 0; --i)
stream << setw(base_digits) << setfill('0') << v.a[i];
return stream;
}
static vector<long long> convert_base(const vector<long long> &a, long long old_digits, long long new_digits) {
vector<long long> p(max(old_digits, new_digits) + 1);
p[0] = 1;
for (long long i = 1; i < (long long) p.size(); i++)
p[i] = p[i - 1] * 10;
vector<long long> res;
long long cur = 0;
long long cur_digits = 0;
for (long long i = 0; i < (long long) a.size(); i++) {
cur += a[i] * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits) {
res.push_back((long long)(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((long long) cur);
while (!res.empty() && !res.back())
res.pop_back();
return res;
}
typedef vector<long long> vll;
static vll karatsubaMultiply(const vll &a, const vll &b) {
long long n = a.size();
vll res(n + n);
if (n <= 32) {
for (long long i = 0; i < n; i++)
for (long long j = 0; j < n; j++)
res[i + j] += a[i] * b[j];
return res;
}
long long k = n >> 1;
vll a1(a.begin(), a.begin() + k);
vll a2(a.begin() + k, a.end());
vll b1(b.begin(), b.begin() + k);
vll b2(b.begin() + k, b.end());
vll a1b1 = karatsubaMultiply(a1, b1);
vll a2b2 = karatsubaMultiply(a2, b2);
for (long long i = 0; i < k; i++)
a2[i] += a1[i];
for (long long i = 0; i < k; i++)
b2[i] += b1[i];
vll r = karatsubaMultiply(a2, b2);
for (long long i = 0; i < (long long) a1b1.size(); i++)
r[i] -= a1b1[i];
for (long long i = 0; i < (long long) a2b2.size(); i++)
r[i] -= a2b2[i];
for (long long i = 0; i < (long long) r.size(); i++)
res[i + k] += r[i];
for (long long i = 0; i < (long long) a1b1.size(); i++)
res[i] += a1b1[i];
for (long long i = 0; i < (long long) a2b2.size(); i++)
res[i + n] += a2b2[i];
return res;
}
bigint operator*(const bigint &v) const {
vector<long long> a6 = convert_base(this->a, base_digits, 6);
vector<long long> b6 = convert_base(v.a, base_digits, 6);
vll a(a6.begin(), a6.end());
vll b(b6.begin(), b6.end());
while (a.size() < b.size())
a.push_back(0);
while (b.size() < a.size())
b.push_back(0);
while (a.size() & (a.size() - 1))
a.push_back(0), b.push_back(0);
vll c = karatsubaMultiply(a, b);
bigint res;
res.sign = sign * v.sign;
for (long long i = 0, carry = 0; i < (long long) c.size(); i++) {
long long cur = c[i] + carry;
res.a.push_back((long long) (cur % 1000000));
carry = (long long) (cur / 1000000);
}
res.a = convert_base(res.a, 6, base_digits);
res.trim();
return res;
}
};
bigint mygcd(bigint a, bigint b) {
if (b == 0) return a;
return mygcd(b, a % b);
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
struct Fraction {
bigint a = 0, b = 1;
bool operator<(const Fraction &other) const & {
return a * other.b < other.a * b;
}
bool operator<=(const Fraction &other) const & {
return !(other < *this);
}
Fraction operator*(const Fraction &other) const & {
bigint A = a * other.a;
bigint B = b * other.b;
return {A, B};
// bigint G = __gcd(A, B);
// return {A / G, B / G};
}
Fraction operator+(const Fraction &other) const & {
bigint B = b * other.b;
bigint A = a * other.b + other.a * b;
return {A, B};
// bigint G = abs(__gcd(A, B));
// return {A / G, B / G};
}
Fraction operator-(Fraction other) {
other.a *= -1;
return (*this) + other;
}
};
int n, m;
cin >> n >> m;
vector<vector<int>> v(n, vector<int>(m));
vector<vector<int>> f(n, vector<int>(m + 1, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
int x;
cin >> x;
v[i][j] = x;
f[i][j + 1] = f[i][j] + x;
}
}
vector<Fraction> key;
vector<int> perm;
vector<bool> chosen(n, false);
Fraction cur = {0, 1};
vector<int> ptr(n, 0); // possible cut for i is in [ptr[i], ptr[i] + 1)
for (int t = 0; t < n - 1; t++) {
// cout << "Yo!" << endl;
vector<pair<Fraction, int>> get = [&]() -> vector<pair<Fraction, int>> {
vector<pair<Fraction, int>> res;
for (int i = 0; i < n; i++) {
if (chosen[i]) continue;
// cout << "Ya!" << endl;
Fraction nxt = [&]() -> Fraction {
auto F = [&](Fraction x) -> Fraction {
bigint get = x.a / x.b;
int j = get.a.size() == 0 ? 0 : get.a[0];
if (j < m) return Fraction{f[i][j], 1} + Fraction{v[i][j], 1} * Fraction{x.a % x.b, x.b};
return Fraction{f[i][m], 1};
};
Fraction req = F(Fraction{m, 1}) * Fraction{1, n};
while (true) {
if (F(Fraction{ptr[i] + 1, 1}) - F(cur) <= req) { // then is not enough
ptr[i]++;
continue;
}
Fraction rem = req + F(cur) - F(Fraction{ptr[i], 1});
return Fraction{ptr[i], 1} + rem * Fraction{1, v[i][ptr[i]]};
}
}();
// cout << "Ye!" << endl;
res.push_back({nxt, i});
}
return res;
}();
auto [nxt, i] = *min_element(get.begin(), get.end());
key.push_back(nxt);
perm.push_back(i);
cur = nxt;
chosen[i] = true;
// cout << nxt.a << ' ' << nxt.b << endl;
}
for (int i = 0; i < n; i++) {
if (!chosen[i]) perm.push_back(i);
}
for (Fraction frac : key) {
bigint g = gcd(frac.a, frac.b);
cout << frac.a / g << ' ' << frac.b / g << '\n';
// cout << frac.a << ' ' << frac.b << '\n';
}
for (int i : perm) {
cout << i + 1 << ' ';
}
cout << '\n';
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
9 ms |
348 KB |
Output is correct |
3 |
Correct |
10 ms |
508 KB |
Output is correct |
4 |
Correct |
11 ms |
348 KB |
Output is correct |
5 |
Correct |
6 ms |
596 KB |
Output is correct |
6 |
Correct |
1 ms |
348 KB |
Output is correct |
7 |
Correct |
7 ms |
348 KB |
Output is correct |
8 |
Correct |
1 ms |
348 KB |
Output is correct |
9 |
Correct |
3 ms |
348 KB |
Output is correct |
10 |
Correct |
3 ms |
348 KB |
Output is correct |
11 |
Correct |
11 ms |
520 KB |
Output is correct |
12 |
Correct |
12 ms |
516 KB |
Output is correct |
13 |
Correct |
11 ms |
348 KB |
Output is correct |
14 |
Correct |
12 ms |
344 KB |
Output is correct |
15 |
Correct |
15 ms |
348 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
7 ms |
344 KB |
Output is correct |
2 |
Correct |
17 ms |
520 KB |
Output is correct |
3 |
Correct |
23 ms |
528 KB |
Output is correct |
4 |
Correct |
33 ms |
552 KB |
Output is correct |
5 |
Correct |
26 ms |
348 KB |
Output is correct |
6 |
Correct |
16 ms |
508 KB |
Output is correct |
7 |
Correct |
8 ms |
348 KB |
Output is correct |
8 |
Correct |
10 ms |
492 KB |
Output is correct |
9 |
Correct |
37 ms |
348 KB |
Output is correct |
10 |
Correct |
35 ms |
348 KB |
Output is correct |
11 |
Correct |
23 ms |
348 KB |
Output is correct |
12 |
Correct |
2 ms |
344 KB |
Output is correct |
13 |
Correct |
19 ms |
516 KB |
Output is correct |
14 |
Correct |
35 ms |
564 KB |
Output is correct |
15 |
Correct |
30 ms |
348 KB |
Output is correct |
16 |
Correct |
38 ms |
348 KB |
Output is correct |
17 |
Correct |
34 ms |
344 KB |
Output is correct |
18 |
Correct |
47 ms |
348 KB |
Output is correct |
19 |
Correct |
44 ms |
344 KB |
Output is correct |
20 |
Correct |
35 ms |
344 KB |
Output is correct |
21 |
Correct |
43 ms |
344 KB |
Output is correct |
22 |
Correct |
43 ms |
348 KB |
Output is correct |
23 |
Correct |
1 ms |
348 KB |
Output is correct |
24 |
Correct |
32 ms |
348 KB |
Output is correct |
25 |
Correct |
24 ms |
348 KB |
Output is correct |
26 |
Correct |
10 ms |
348 KB |
Output is correct |
27 |
Correct |
31 ms |
548 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
9 ms |
348 KB |
Output is correct |
3 |
Correct |
10 ms |
508 KB |
Output is correct |
4 |
Correct |
11 ms |
348 KB |
Output is correct |
5 |
Correct |
6 ms |
596 KB |
Output is correct |
6 |
Correct |
1 ms |
348 KB |
Output is correct |
7 |
Correct |
7 ms |
348 KB |
Output is correct |
8 |
Correct |
1 ms |
348 KB |
Output is correct |
9 |
Correct |
3 ms |
348 KB |
Output is correct |
10 |
Correct |
3 ms |
348 KB |
Output is correct |
11 |
Correct |
11 ms |
520 KB |
Output is correct |
12 |
Correct |
12 ms |
516 KB |
Output is correct |
13 |
Correct |
11 ms |
348 KB |
Output is correct |
14 |
Correct |
12 ms |
344 KB |
Output is correct |
15 |
Correct |
15 ms |
348 KB |
Output is correct |
16 |
Correct |
7 ms |
344 KB |
Output is correct |
17 |
Correct |
17 ms |
520 KB |
Output is correct |
18 |
Correct |
23 ms |
528 KB |
Output is correct |
19 |
Correct |
33 ms |
552 KB |
Output is correct |
20 |
Correct |
26 ms |
348 KB |
Output is correct |
21 |
Correct |
16 ms |
508 KB |
Output is correct |
22 |
Correct |
8 ms |
348 KB |
Output is correct |
23 |
Correct |
10 ms |
492 KB |
Output is correct |
24 |
Correct |
37 ms |
348 KB |
Output is correct |
25 |
Correct |
35 ms |
348 KB |
Output is correct |
26 |
Correct |
23 ms |
348 KB |
Output is correct |
27 |
Correct |
2 ms |
344 KB |
Output is correct |
28 |
Correct |
19 ms |
516 KB |
Output is correct |
29 |
Correct |
35 ms |
564 KB |
Output is correct |
30 |
Correct |
30 ms |
348 KB |
Output is correct |
31 |
Correct |
38 ms |
348 KB |
Output is correct |
32 |
Correct |
34 ms |
344 KB |
Output is correct |
33 |
Correct |
47 ms |
348 KB |
Output is correct |
34 |
Correct |
44 ms |
344 KB |
Output is correct |
35 |
Correct |
35 ms |
344 KB |
Output is correct |
36 |
Correct |
43 ms |
344 KB |
Output is correct |
37 |
Correct |
43 ms |
348 KB |
Output is correct |
38 |
Correct |
1 ms |
348 KB |
Output is correct |
39 |
Correct |
32 ms |
348 KB |
Output is correct |
40 |
Correct |
24 ms |
348 KB |
Output is correct |
41 |
Correct |
10 ms |
348 KB |
Output is correct |
42 |
Correct |
31 ms |
548 KB |
Output is correct |
43 |
Execution timed out |
4066 ms |
4912 KB |
Time limit exceeded |
44 |
Halted |
0 ms |
0 KB |
- |