답안 #1091328

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
1091328 2024-09-20T14:40:36 Z steveonalex Bubble Sort 2 (JOI18_bubblesort2) C++17
60 / 100
9000 ms 30544 KB
#include <bits/stdc++.h>
#include "bubblesort2.h"
 
using namespace std;
 
typedef long long ll;
typedef unsigned long long ull;
 
#define MASK(i) (1LL << (i))
#define GETBIT(mask, i) (((mask) >> (i)) & 1)
#define ALL(v) (v).begin(), (v).end()
#define block_of_code if(true)
 
ll max(ll a, ll b){return (a > b) ? a : b;}
ll min(ll a, ll b){return (a < b) ? a : b;}
ll gcd(ll a, ll b){return __gcd(a, b);}
ll lcm(ll a, ll b){return a / gcd(a, b) * b;}
 
ll LASTBIT(ll mask){return (mask) & (-mask);}
int pop_cnt(ll mask){return __builtin_popcountll(mask);}
int ctz(ull mask){return __builtin_ctzll(mask);}
int logOf(ull mask){return 63 - __builtin_clzll(mask);}
 
mt19937_64 rng(chrono::high_resolution_clock::now().time_since_epoch().count());
ll rngesus(ll l, ll r){return l + (ull) rng() % (r - l + 1);}
double rngesus_d(double l, double r){
    double cur = rngesus(0, MASK(60) - 1);
    cur /= MASK(60) - 1;
    return l + cur * (r - l);
}
 
template <class T1, class T2>
    bool maximize(T1 &a, T2 b){
        if (a < b) {a = b; return true;}
        return false;
    }
 
template <class T1, class T2>
    bool minimize(T1 &a, T2 b){
        if (a > b) {a = b; return true;}
        return false;
    }
 
template <class T>
    void printArr(T container, string separator = " ", string finish = "\n", ostream &out = cout){
        for(auto item: container) out << item << separator;
        out << finish;
    }
 
template <class T>
    void remove_dup(vector<T> &a){
        sort(ALL(a));
        a.resize(unique(ALL(a)) - a.begin());
    }

const int BLOCK = 3000;

int di(int x, int y){
    return x / y + (x % y > 0);
}

struct SegmentTree{
    int n;
    vector<int> a, lazy;

    SegmentTree(int _n){
        n = _n;
        a.resize(n * 4 + 4); lazy.resize(n * 4 + 4);
    }

    void update_node(int i, int v){
        a[i] += v;
        lazy[i] += v;
    }

    void down(int id){
        update_node(id * 2, lazy[id]); update_node(id * 2 + 1, lazy[id]);
        lazy[id] = 0;
    }

    void update(int u, int v, int val){if (u <= v) update(u, v, val, 0, n-1, 1);}
    void update(int u, int v, int val, int l, int r, int id){
        if (u <= l && r <= v){
            update_node(id, val);
            return;
        }
        if (lazy[id]) down(id);
        int mid = (l + r) >> 1;
        if (u <= mid) update(u, v, val, l, mid, id * 2);
        if (v > mid) update(u, v, val, mid + 1, r, id * 2 + 1);
        a[id] = max(a[id * 2], a[id * 2 + 1]);
    }

    int get(){return a[1];}

    void build_tree(vector<int> b){build_tree(b, 0, n-1, 1);}
    void build_tree(vector<int> &b, int l, int r, int id){
        if (l == r){a[id] = b[l]; return;}
        lazy[id] = 0;
        int mid = (l + r) >> 1;
        build_tree(b, l, mid, id * 2); build_tree(b, mid + 1, r, id * 2 + 1);
        a[id] = max(a[id * 2], a[id * 2 + 1]);
    }

    vector<int> get_tree(){
        vector<int> ans(n);
        get_tree(ans, 0, n-1, 1);
        return ans;
    }
    void get_tree(vector<int> &ans, int l, int r, int id){
        if (l == r){ans[l] = a[id]; return;}
        if (lazy[id]) down(id);
        int mid = (l + r) >> 1;
        get_tree(ans, l, mid, id * 2); get_tree(ans, mid + 1, r, id * 2 + 1);
    }

};

vector<int> countScans(vector<int> a,vector<int> X,vector<int> V){
    int n = a.size(), q = X.size();

    int b_n = di(n, BLOCK);
    vector<vector<pair<int, int>>> stair(b_n);
    vector<SegmentTree> sigma;
    for(int i = 0; i < n; ++i){
        stair[i / BLOCK].push_back({a[i],i});
    }
    for(int i = 0; i < b_n; ++i) sort(ALL(stair[i]));

    for(int i = 0; i < b_n; ++i){
        sigma.push_back(SegmentTree(stair[i].size()));
        for(int k = 0; k < stair[i].size(); ++k){
            int cur = 0;
            for(int j = 0; j < i; ++j){
                int idx = upper_bound(ALL(stair[j]), stair[i][k]) - stair[j].begin();
                cur += stair[j].size() - idx;
            }
            for(int j = k + 1; j < stair[i].size(); ++j) if (stair[i][j].second < stair[i][k].second)
                cur++;
            sigma[i].update(k, k, cur);
        }
    }


    vector<int> answer(q);

    for(int cur_query = 0; cur_query < q; ++cur_query){

        // cout << "Query: " << cur_query << endl;
        int u = X[cur_query], v = V[cur_query];

        int cur_b = u / BLOCK;
        for(int i = cur_b + 1; i < b_n; ++i){
            int idx = lower_bound(ALL(stair[i]), make_pair(a[u], -1)) - stair[i].begin() - 1;
            sigma[i].update(0, idx, -1);


            idx = lower_bound(ALL(stair[i]), make_pair(v, -1)) - stair[i].begin() - 1;
            sigma[i].update(0, idx, 1);
        }
        int idx = lower_bound(ALL(stair[cur_b]), make_pair(a[u], u)) - stair[cur_b].begin();
        vector<int> cur_sigma = sigma[cur_b].get_tree();


        a[u] = v;
        stair[cur_b][idx] = make_pair(a[u], u);


        while (idx + 1 < stair[cur_b].size() && stair[cur_b][idx] > stair[cur_b][idx + 1]){
            if (stair[cur_b][idx].second < stair[cur_b][idx + 1].second) cur_sigma[idx + 1]++;
            swap(stair[cur_b][idx], stair[cur_b][idx + 1]);
            swap(cur_sigma[idx], cur_sigma[idx + 1]);
            idx++;
        }
        while (idx > 0 && stair[cur_b][idx - 1] > stair[cur_b][idx]){
            if (stair[cur_b][idx].second < stair[cur_b][idx - 1].second) cur_sigma[idx - 1]--;
            swap(stair[cur_b][idx], stair[cur_b][idx - 1]);
            swap(cur_sigma[idx], cur_sigma[idx - 1]);
            idx--;
        }
        cur_sigma[idx] = 0;
        for(int j = 0; j < cur_b; ++j){
            int _idx = upper_bound(ALL(stair[j]), stair[cur_b][idx]) - stair[j].begin();
            cur_sigma[idx] += stair[j].size() - _idx;
        }
        for(int j = idx + 1; j < stair[cur_b].size(); ++j) if (stair[cur_b][j].second < stair[cur_b][idx].second)
            cur_sigma[idx]++;
        sigma[cur_b].build_tree(cur_sigma);

        int ans = 0;
        for(int i = 0; i < b_n; ++i) maximize(ans, sigma[i].get());
        answer[cur_query] = ans;

        // for(int i = 0; i<b_n; ++i){
        //     vector<int> sig = sigma[i].get_tree();
        //     printArr(sig, " ", "");
        // }
        // cout << "\n";
    }
    return answer;
}


// int main(void){
//     ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);

//     int n, q; cin >> n >> q;
//     vector<int> a(n);
//     for(int i = 0; i<n; ++i) cin >> a[i];

//     vector<int> x(q), v(q);
//     for(int i = 0; i<q; ++i) cin >> x[i] >> v[i];

//     printArr(countScans(a, x, v));

//     return 0;
// }

Compilation message

bubblesort2.cpp: In function 'std::vector<int> countScans(std::vector<int>, std::vector<int>, std::vector<int>)':
bubblesort2.cpp:132:26: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  132 |         for(int k = 0; k < stair[i].size(); ++k){
      |                        ~~^~~~~~~~~~~~~~~~~
bubblesort2.cpp:138:34: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  138 |             for(int j = k + 1; j < stair[i].size(); ++j) if (stair[i][j].second < stair[i][k].second)
      |                                ~~^~~~~~~~~~~~~~~~~
bubblesort2.cpp:169:24: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  169 |         while (idx + 1 < stair[cur_b].size() && stair[cur_b][idx] > stair[cur_b][idx + 1]){
      |                ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~
bubblesort2.cpp:186:32: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  186 |         for(int j = idx + 1; j < stair[cur_b].size(); ++j) if (stair[cur_b][j].second < stair[cur_b][idx].second)
      |                              ~~^~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 344 KB Output is correct
2 Correct 7 ms 344 KB Output is correct
3 Correct 34 ms 572 KB Output is correct
4 Correct 33 ms 576 KB Output is correct
5 Correct 35 ms 348 KB Output is correct
6 Correct 28 ms 348 KB Output is correct
7 Correct 28 ms 348 KB Output is correct
8 Correct 31 ms 348 KB Output is correct
9 Correct 31 ms 348 KB Output is correct
10 Correct 29 ms 348 KB Output is correct
11 Correct 29 ms 348 KB Output is correct
12 Correct 29 ms 604 KB Output is correct
13 Correct 29 ms 348 KB Output is correct
14 Correct 29 ms 348 KB Output is correct
15 Correct 39 ms 348 KB Output is correct
16 Correct 29 ms 344 KB Output is correct
17 Correct 29 ms 344 KB Output is correct
18 Correct 29 ms 596 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 344 KB Output is correct
2 Correct 7 ms 344 KB Output is correct
3 Correct 34 ms 572 KB Output is correct
4 Correct 33 ms 576 KB Output is correct
5 Correct 35 ms 348 KB Output is correct
6 Correct 28 ms 348 KB Output is correct
7 Correct 28 ms 348 KB Output is correct
8 Correct 31 ms 348 KB Output is correct
9 Correct 31 ms 348 KB Output is correct
10 Correct 29 ms 348 KB Output is correct
11 Correct 29 ms 348 KB Output is correct
12 Correct 29 ms 604 KB Output is correct
13 Correct 29 ms 348 KB Output is correct
14 Correct 29 ms 348 KB Output is correct
15 Correct 39 ms 348 KB Output is correct
16 Correct 29 ms 344 KB Output is correct
17 Correct 29 ms 344 KB Output is correct
18 Correct 29 ms 596 KB Output is correct
19 Correct 199 ms 860 KB Output is correct
20 Correct 215 ms 860 KB Output is correct
21 Correct 171 ms 988 KB Output is correct
22 Correct 192 ms 856 KB Output is correct
23 Correct 189 ms 856 KB Output is correct
24 Correct 218 ms 860 KB Output is correct
25 Correct 173 ms 984 KB Output is correct
26 Correct 167 ms 964 KB Output is correct
27 Correct 150 ms 856 KB Output is correct
28 Correct 158 ms 860 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 89 ms 1624 KB Output is correct
2 Correct 800 ms 2820 KB Output is correct
3 Correct 1584 ms 3872 KB Output is correct
4 Correct 1519 ms 3700 KB Output is correct
5 Correct 1415 ms 3920 KB Output is correct
6 Correct 1473 ms 3664 KB Output is correct
7 Correct 1403 ms 3868 KB Output is correct
8 Correct 1407 ms 3864 KB Output is correct
9 Correct 1385 ms 3640 KB Output is correct
10 Correct 889 ms 3952 KB Output is correct
11 Correct 879 ms 3860 KB Output is correct
12 Correct 868 ms 3872 KB Output is correct
13 Correct 797 ms 3664 KB Output is correct
14 Correct 781 ms 3868 KB Output is correct
15 Correct 803 ms 3792 KB Output is correct
16 Correct 706 ms 3668 KB Output is correct
17 Correct 711 ms 3860 KB Output is correct
18 Correct 711 ms 3856 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 344 KB Output is correct
2 Correct 7 ms 344 KB Output is correct
3 Correct 34 ms 572 KB Output is correct
4 Correct 33 ms 576 KB Output is correct
5 Correct 35 ms 348 KB Output is correct
6 Correct 28 ms 348 KB Output is correct
7 Correct 28 ms 348 KB Output is correct
8 Correct 31 ms 348 KB Output is correct
9 Correct 31 ms 348 KB Output is correct
10 Correct 29 ms 348 KB Output is correct
11 Correct 29 ms 348 KB Output is correct
12 Correct 29 ms 604 KB Output is correct
13 Correct 29 ms 348 KB Output is correct
14 Correct 29 ms 348 KB Output is correct
15 Correct 39 ms 348 KB Output is correct
16 Correct 29 ms 344 KB Output is correct
17 Correct 29 ms 344 KB Output is correct
18 Correct 29 ms 596 KB Output is correct
19 Correct 199 ms 860 KB Output is correct
20 Correct 215 ms 860 KB Output is correct
21 Correct 171 ms 988 KB Output is correct
22 Correct 192 ms 856 KB Output is correct
23 Correct 189 ms 856 KB Output is correct
24 Correct 218 ms 860 KB Output is correct
25 Correct 173 ms 984 KB Output is correct
26 Correct 167 ms 964 KB Output is correct
27 Correct 150 ms 856 KB Output is correct
28 Correct 158 ms 860 KB Output is correct
29 Correct 89 ms 1624 KB Output is correct
30 Correct 800 ms 2820 KB Output is correct
31 Correct 1584 ms 3872 KB Output is correct
32 Correct 1519 ms 3700 KB Output is correct
33 Correct 1415 ms 3920 KB Output is correct
34 Correct 1473 ms 3664 KB Output is correct
35 Correct 1403 ms 3868 KB Output is correct
36 Correct 1407 ms 3864 KB Output is correct
37 Correct 1385 ms 3640 KB Output is correct
38 Correct 889 ms 3952 KB Output is correct
39 Correct 879 ms 3860 KB Output is correct
40 Correct 868 ms 3872 KB Output is correct
41 Correct 797 ms 3664 KB Output is correct
42 Correct 781 ms 3868 KB Output is correct
43 Correct 803 ms 3792 KB Output is correct
44 Correct 706 ms 3668 KB Output is correct
45 Correct 711 ms 3860 KB Output is correct
46 Correct 711 ms 3856 KB Output is correct
47 Correct 6540 ms 10616 KB Output is correct
48 Execution timed out 9032 ms 30544 KB Time limit exceeded
49 Halted 0 ms 0 KB -