Submission #1082494

# Submission time Handle Problem Language Result Execution time Memory
1082494 2024-08-31T13:47:44 Z binminh01 Food Court (JOI21_foodcourt) C++17
29 / 100
1000 ms 73036 KB
#include<bits/allocator.h>
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,fma,bmi,bmi2,popcnt,lzcnt")

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define int128 __int128_t
#define double long double
#define gcd __gcd
#define lcm(a, b) ((a)/gcd(a, b)*(b))
#define sqrt sqrtl
#define log2 log2l
#define log10 log10l
#define floor floorl
#define to_string str
#define yes cout << "YES"
#define no cout << "NO"
#define trav(i, a) for (auto &i: (a))
#define all(a) (a).begin(), (a).end()
#define rall(a) (a).rbegin(), (a).rend()
#define sz(a) (int)a.size()
#define Max(a) *max_element(all(a))
#define Min(a) *min_element(all(a))
#define Find(a, n) (find(all(a), n) - a.begin())
#define Count(a, n) count(all(a), n)
#define Upper(a, n) (upper_bound(all(a), n) - a.begin())
#define Lower(a, n) (lower_bound(all(a), n) - a.begin())
#define next_perm(a) next_permutation(all(a))
#define prev_perm(a) prev_permutation(all(a))
#define sorted(a) is_sorted(all(a))
#define sum(a) accumulate(all(a), 0)
#define sumll(a) accumulate(all(a), 0ll)
#define Sort(a) sort(all(a))
#define Reverse(a) reverse(all(a))
#define Unique(a) Sort(a), (a).resize(unique(all(a)) - a.begin())
#define pb push_back
#define eb emplace_back
#define popcount __builtin_popcount
#define popcountll __builtin_popcountll
#define clz __builtin_clz
#define clzll __buitlin_clzll
#define ctz __builtin_ctz
#define ctzll __builtin_ctzll
#define open(s) freopen(s, "r", stdin)
#define write(s) freopen(s, "w", stdout)
#define fileopen(s) open((string(s) + ".inp").c_str()), write((string(s) + ".out").c_str());
#define For(i, a, b) for (auto i = (a); i < (b); i++)
#define Fore(i, a, b) for (auto i = (a); i >= (b); i--)
#define FOR(i, a, b) for (auto i = (a); i <= (b); i++)
#define ret(s) return void(cout << s);

const int mod = 1e9 + 7, mod2 = 998244353;
const double PI = acos(-1), eps = 1e-9;
const ull npos = string::npos;
const int dx[] = {0, 0, -1, 1}, dy[] = {-1, 1, 0, 0};
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using cd = complex<double>;
mt19937 mt(chrono::system_clock::now().time_since_epoch().count());
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<ll> vll;
typedef vector<vll> vvll;
typedef vector<double> vdo;
typedef vector<vdo> vvdo;
typedef vector<string> vs;
typedef vector<pii> vpair;
typedef vector<vpair> vvpair;
typedef vector<bool> vb;
typedef vector<vb> vvb;
typedef vector<char> vc;
typedef vector<vc> vvc;
typedef vector<cd> vcd;
typedef priority_queue<int> pq;
typedef priority_queue<int, vi, greater<int>> pqg;
typedef priority_queue<ll> pqll;
typedef priority_queue<ll, vll, greater<ll>> pqgll;

ll add(ll a, ll b, int m) {if (a >= m) a%=m;if (b >= m) b%=m;a+=b;return a >= m ? a - m: a;}
ll sub(ll a, ll b, int m) {if (a >= m) a%=m;if (b >= m) b%=m;a-=b;return a < 0 ? a + m: a;}
ll mul(ll a, ll b, int m) {if (a >= m) a%=m;if (b >= m) b%=m;return a*b % m;}
ll bin_mul(ll a, ll b, ll m) {if (a >= m) a%=m;if (b >= m) b%=m;ll x = 0;while (b) {if (b & 1) x = (x + a) % m;a = (a + a) % m;b>>=1;}return x;}
ll bin_pow(ll a, ll b, ll m) {ll x = 1;if (a >= m) a%=m; while (b) {if (b & 1) x = bin_mul(x, a, m);a = bin_mul(a, a, m);b>>=1;}return x;}
ll power(ll a, ll b, int m) {ll x = 1;if (a >= m) a%=m; while (b) {if (b & 1) x = x*a % m;a = a*a % m;b>>=1;}return x;}
ll power(ll a, ll b) {ll x = 1;while (b) {if (b & 1) x = x*a;a = a*a;b>>=1;}return x;}
ll ceil(ll a, ll b) {return (a + b - 1)/b;}
ll to_int(const string &s) {ll x = 0; for (int i = (s[0] == '-'); i < sz(s); i++) x = x*10 + s[i] - '0';return x*(s[0] == '-' ? -1: 1);}
bool is_prime(ll n) {if (n < 2) return 0;if (n < 4) return 1;if (n % 2 == 0 || n % 3 == 0) return 0;for (ll i = 5; i*i <= n; i+=6) {if(n % i == 0 || n % (i + 2) == 0) return 0;}return 1;}
bool is_square(ll n) {ll k = sqrt(n); return k*k == n;}
ll factorial(int n) {ll x = 1;for (int i = 2; i <= n; i++) x*=i;return x;}
ll factorial(int n, int m) {ll x = 1;for (ll i = 2; i <= n; i++) x = x*i % m;return x;}
bool is_power(ll n, ll k) {while (n % k == 0) n/=k;return n == 1ll;}
string str(ll n) {if (n == 0) return "0"; string s = ""; bool c = 0; if (n < 0) c = 1, n = -n; while (n) {s+=n % 10 + '0'; n/=10;} if (c) s+='-'; Reverse(s); return s;}
string repeat(const string &s, int n) {if (n < 0) return ""; string x = ""; while (n--) x+=s; return x;}
string bin(ll n) {string s = ""; while (n) {s+=(n & 1) + '0'; n>>=1;} Reverse(s); return s;}
void sieve(vector<bool> &a) {int n = a.size(); a[0] = a[1] = 0; for (int i = 4; i < n; i+=2) a[i] = 0; for (int i = 3; i*i < n; i+=2) {if (a[i]) {for (int j = i*i; j < n; j+=(i << 1)) a[j] = 0;}}}
void sieve(bool a[], int n) {a[0] = a[1] = 0; for (int i = 4; i < n; i+=2) a[i] = 0; for (int i = 3; i*i < n; i+=2) {if (a[i]) {for (int j = i*i; j < n; j+=(i << 1)) a[j] = 0;}}}
void sieve(vector<int> &a) {int n = a.size(); for (int i = 2; i < n; i+=2) a[i] = 2; for (int i = 3; i*i < n; i+=2) {if (!a[i]) {for (int j = i; j < n; j+=(i << 1)) a[j] = i;}} for (int i = 3; i < n; i+=2) {if (!a[i]) a[i] = i;}}
void sieve(int a[], int n) {for (int i = 2; i < n; i+=2) a[i] = 2; for (int i = 3; i*i < n; i+=2) {if (!a[i]) {for (int j = i; j < n; j+=(i << 1)) a[j] = i;}} for (int i = 3; i < n; i+=2) {if (!a[i]) a[i] = i;}}
vector<pii> factorize(int n) {vector<pii> a; for (int i = 2; i*i <= n; i++) {if (n % i == 0) {int k = 0; while (n % i == 0) k++, n/=i; a.emplace_back(i, k);}} if (n > 1) a.emplace_back(n, 1); return a;}
int rand(int l, int r) {return uniform_int_distribution<int>(l, r)(mt);}
int Log2(int n) {return 31 - __builtin_clz(n);}
template<class T> void compress(vector<T> &a) {vector<T> b; for (T &i: a) b.push_back(i); sort(all(b)); b.resize(unique(all(b)) - b.begin()); for (T &i: a) i = lower_bound(all(b), i) - b.begin() + 1;}

template<class A, class B> istream& operator>>(istream& in, pair<A, B> &p) {in >> p.first >> p.second; return in;}
template<class A, class B> ostream& operator<<(ostream& out, const pair<A, B> &p) {out << p.first << ' ' << p.second; return out;}
template<class T> istream& operator>>(istream& in, vector<T> &a) {for (auto &i: a) in >> i; return in;}
template<class T> ostream& operator<<(ostream& out, const vector<T> &a) {for (auto &i: a) out << i << ' '; return out;}
template<class T> istream& operator>>(istream& in, vector<vector<T>> &a) {for (auto &i: a) in >> i; return in;}
template<class T> ostream& operator<<(ostream& out, const vector<vector<T>> &a) {for (auto &i: a) out << i << '\n'; return out;}
template<class T> istream& operator>>(istream& in, deque<T> &a) {for (auto &i: a) in >> i; return in;}
template<class T> ostream& operator<<(ostream& out, const deque<T> &a) {for (auto &i: a) out << i << ' '; return out;}
// istream& operator>>(istream& in, __int128_t &a) {string s; in >> s; a = 0; for (auto &i: s) a = a*10 + (i - '0'); return in;}
// ostream& operator<<(ostream& out, __int128_t a) {string s = ""; while (a > 0) {s+=(int)(a % 10) + '0'; a/=10;} Reverse(s); out << s; return out;}

using ii = pair<ll, int>;
struct segtree_lazy_min_recursive {
    int n;
    vector<ii> t;
    vll z;
    segtree_lazy_min_recursive(int n): n(n) {
        t.resize(4*n + 5);
        z.resize(4*n + 5);
    }
    void build(const vll &a, int x, int lx, int rx) {
        if (lx == rx) {
            t[x] = {a[lx], lx};
            return;
        }
        int m = (lx + rx) >> 1;
        build(a, x << 1, lx, m);
        build(a, x << 1|1, m + 1, rx);
        t[x] = min(t[x << 1], t[x << 1|1]);
    }
    void down(int i) {
        t[i << 1].first+=z[i], t[i << 1|1].first+=z[i];
        z[i << 1]+=z[i], z[i << 1|1]+=z[i];
        z[i] = 0;
    }
    void set(int l, int r, int x, int lx, int rx, ll d) {
        if (lx > r || rx < l) return;
        if (lx >= l && rx <= r) {t[x].first+=d; z[x]+=d; return;}
        down(x);
        int m = (lx + rx) >> 1;
        set(l, r, x << 1, lx, m, d);
        set(l, r, x << 1|1, m + 1, rx, d);
        t[x] = min(t[x << 1], t[x << 1|1]);
    }
    ii get(int l, int r, int x, int lx, int rx) {
        if (lx > r || rx < l) return {1e18, 0};
        if (lx >= l && rx <= r) return t[x];
        down(x);
        int m = (lx + rx) >> 1;
        return min(get(l, r, x << 1, lx, m), get(l, r, x << 1|1, m + 1, rx));
    }
    void build(const vll &a) {build(a, 1, 0, n);}
    void set(int l, int r, ll d) {set(l, r, 1, 0, n, d);}
    ii get(int l, int r) {return get(l, r, 1, 0, n);}
};
struct segtree_lazy_sum_recursive {
    int n;
    vector<ll> t, z;
    ll merge(ll a, ll b) {return a + b;}
    segtree_lazy_sum_recursive(int n): n(n) {
        t.resize(4*n + 5);
        z.resize(4*n + 5);
    }
    void build(const vector<ll> &a, int x, int lx, int rx) {
        if (lx == rx) {
            t[x] = a[lx];
            return;
        }
        int m = (lx + rx) >> 1;
        build(a, x << 1, lx, m);
        build(a, x << 1|1, m + 1, rx);
        t[x] = merge(t[x << 1], t[x << 1|1]);
    }
    void down(int i, int l, int r) {
        ll k = z[i];
        int m = (l + r) >> 1;
        if (k != 0) {
            t[i << 1]+=k*(m - l + 1);
            t[i << 1|1]+=k*(r - m);
            z[i << 1]+=k; z[i << 1|1]+=k;
            z[i] = 0;
        }
    }
    void set(int l, int r, int x, int lx, int rx, ll d) {
        if (lx > r || rx < l) return;
        if (lx >= l && rx <= r) {t[x]+=d*(rx - lx + 1); z[x]+=d; return;}
        down(x, lx, rx);
        int m = (lx + rx) >> 1;
        set(l, r, x << 1, lx, m, d);
        set(l, r, x << 1|1, m + 1, rx, d);
        t[x] = merge(t[x << 1], t[x << 1|1]);
    }
    ll get(int l, int r, int x, int lx, int rx) {
        if (lx > r || rx < l) return 0;
        if (lx >= l && rx <= r) return t[x];
        down(x, lx, rx);
        int m = (lx + rx) >> 1;
        return merge(get(l, r, x << 1, lx, m), get(l, r, x << 1|1, m + 1, rx));
    }
    int walk(int i, int x, int l, int r, ll d) {
        if (r < i || t[x] < d) return -1;
        if (l == r) return l;
        down(x, l, r);
        int m = (l + r) >> 1;
        int w = -1;
        if (t[x << 1] >= d) w = walk(i, x << 1, l, m, d);
        if (w == -1) w = walk(i, x << 1|1, m + 1, r, d);
        return w;
    }
    void build(const vector<ll> &a) {build(a, 1, 0, n);}
    void set(int l, int r, ll d) {set(l, r, 1, 0, n, d);}
    ll get(int l, int r) {return get(l, r, 1, 0, n);}
    int walk(int i, ll d) {return walk(i, 1, 0, n, d);}
};
const int N = 250005;
struct que {
    int o, i, k;
    que(int o = 0, int i = 0, int k = 0): o(o), i(i), k(k) {}
};
int g[N], f[N];
vector<que> w[N];
vector<ii> a[N];
bool p[N];
int main() {
    ios_base::sync_with_stdio(0); cin.tie(NULL); cout.tie(NULL);
    cout << fixed << setprecision(10);
    int n, m, q; cin >> n >> m >> q;
    segtree_lazy_min_recursive t(q);
    segtree_lazy_sum_recursive t1(q), t2(q);
    t.build(vll(q + 1));
    FOR(i,1,q){
        int o; cin >> o;
        if (o == 1) {
            int l, r, c, k; cin >> l >> r >> c >> k;
            g[i] = c;
            w[l].eb(o, i, k); w[r + 1].eb(o, i, -k);
        } else if (o == 2) {
            int l, r, k; cin >> l >> r >> k;
            w[l].eb(o, i, -k); w[r + 1].eb(o, i, k);
        } else {
            int j; ll v; cin >> j >> v;
            p[i] = 1;
            a[j].eb(v, i);
        }
    }
    FOR(i,1,n){
        for (auto [o, j, k]: w[i]) {
            t.set(j, q, k);
            if (o == 1) t1.set(j, q, k);
            else t2.set(j, q, -k);
        }
        for (auto [v, j]: a[i]) {
            auto [u, l] = t.get(0, j);
            if (t.get(j, j).first < u + v) continue;
            v+=t2.get(j, j) + u;
            f[j] = g[t1.walk(l + 1, v)];
        }
    }
    FOR(i,1,q){
        if (p[i]) cout << f[i] << '\n';
    }
    cerr << "\nProcess returned 0 (0x0)   execution time :  " << 0.001*clock() << " s";
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 5 ms 13148 KB Output is correct
2 Correct 6 ms 13308 KB Output is correct
3 Correct 5 ms 13148 KB Output is correct
4 Correct 6 ms 13148 KB Output is correct
5 Correct 4 ms 13148 KB Output is correct
6 Correct 4 ms 13148 KB Output is correct
7 Correct 6 ms 13304 KB Output is correct
8 Correct 5 ms 13308 KB Output is correct
9 Correct 6 ms 13148 KB Output is correct
10 Correct 6 ms 13256 KB Output is correct
11 Correct 8 ms 13148 KB Output is correct
12 Correct 6 ms 13148 KB Output is correct
13 Correct 5 ms 13148 KB Output is correct
14 Correct 5 ms 13148 KB Output is correct
15 Correct 6 ms 13148 KB Output is correct
16 Correct 5 ms 13148 KB Output is correct
17 Correct 5 ms 13148 KB Output is correct
18 Correct 5 ms 13148 KB Output is correct
19 Correct 5 ms 13144 KB Output is correct
20 Correct 5 ms 13148 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 13148 KB Output is correct
2 Correct 6 ms 13308 KB Output is correct
3 Correct 5 ms 13148 KB Output is correct
4 Correct 6 ms 13148 KB Output is correct
5 Correct 4 ms 13148 KB Output is correct
6 Correct 4 ms 13148 KB Output is correct
7 Correct 6 ms 13304 KB Output is correct
8 Correct 5 ms 13308 KB Output is correct
9 Correct 6 ms 13148 KB Output is correct
10 Correct 6 ms 13256 KB Output is correct
11 Correct 8 ms 13148 KB Output is correct
12 Correct 6 ms 13148 KB Output is correct
13 Correct 5 ms 13148 KB Output is correct
14 Correct 5 ms 13148 KB Output is correct
15 Correct 6 ms 13148 KB Output is correct
16 Correct 5 ms 13148 KB Output is correct
17 Correct 5 ms 13148 KB Output is correct
18 Correct 5 ms 13148 KB Output is correct
19 Correct 5 ms 13144 KB Output is correct
20 Correct 5 ms 13148 KB Output is correct
21 Correct 5 ms 13148 KB Output is correct
22 Correct 5 ms 13312 KB Output is correct
23 Correct 5 ms 13148 KB Output is correct
24 Correct 6 ms 13276 KB Output is correct
25 Correct 4 ms 13004 KB Output is correct
26 Correct 5 ms 13412 KB Output is correct
27 Correct 6 ms 13148 KB Output is correct
28 Correct 5 ms 13292 KB Output is correct
29 Correct 6 ms 13260 KB Output is correct
30 Correct 6 ms 13148 KB Output is correct
31 Correct 5 ms 13256 KB Output is correct
32 Correct 6 ms 13148 KB Output is correct
33 Correct 4 ms 13148 KB Output is correct
34 Correct 5 ms 13148 KB Output is correct
35 Correct 6 ms 13148 KB Output is correct
36 Correct 5 ms 13148 KB Output is correct
37 Correct 5 ms 13148 KB Output is correct
38 Correct 6 ms 13148 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 78 ms 30072 KB Output is correct
2 Correct 73 ms 29788 KB Output is correct
3 Correct 81 ms 29780 KB Output is correct
4 Correct 76 ms 29788 KB Output is correct
5 Correct 75 ms 29940 KB Output is correct
6 Correct 72 ms 29788 KB Output is correct
7 Correct 40 ms 28540 KB Output is correct
8 Correct 44 ms 29276 KB Output is correct
9 Correct 77 ms 29784 KB Output is correct
10 Correct 85 ms 29784 KB Output is correct
11 Correct 74 ms 29780 KB Output is correct
12 Correct 81 ms 29852 KB Output is correct
13 Correct 72 ms 28044 KB Output is correct
14 Correct 75 ms 29808 KB Output is correct
15 Correct 83 ms 29648 KB Output is correct
16 Correct 88 ms 29784 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 1043 ms 73036 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 13148 KB Output is correct
2 Correct 6 ms 13308 KB Output is correct
3 Correct 5 ms 13148 KB Output is correct
4 Correct 6 ms 13148 KB Output is correct
5 Correct 4 ms 13148 KB Output is correct
6 Correct 4 ms 13148 KB Output is correct
7 Correct 6 ms 13304 KB Output is correct
8 Correct 5 ms 13308 KB Output is correct
9 Correct 6 ms 13148 KB Output is correct
10 Correct 6 ms 13256 KB Output is correct
11 Correct 8 ms 13148 KB Output is correct
12 Correct 6 ms 13148 KB Output is correct
13 Correct 5 ms 13148 KB Output is correct
14 Correct 5 ms 13148 KB Output is correct
15 Correct 6 ms 13148 KB Output is correct
16 Correct 5 ms 13148 KB Output is correct
17 Correct 5 ms 13148 KB Output is correct
18 Correct 5 ms 13148 KB Output is correct
19 Correct 5 ms 13144 KB Output is correct
20 Correct 5 ms 13148 KB Output is correct
21 Correct 78 ms 30072 KB Output is correct
22 Correct 73 ms 29788 KB Output is correct
23 Correct 81 ms 29780 KB Output is correct
24 Correct 76 ms 29788 KB Output is correct
25 Correct 75 ms 29940 KB Output is correct
26 Correct 72 ms 29788 KB Output is correct
27 Correct 40 ms 28540 KB Output is correct
28 Correct 44 ms 29276 KB Output is correct
29 Correct 77 ms 29784 KB Output is correct
30 Correct 85 ms 29784 KB Output is correct
31 Correct 74 ms 29780 KB Output is correct
32 Correct 81 ms 29852 KB Output is correct
33 Correct 72 ms 28044 KB Output is correct
34 Correct 75 ms 29808 KB Output is correct
35 Correct 83 ms 29648 KB Output is correct
36 Correct 88 ms 29784 KB Output is correct
37 Correct 735 ms 28048 KB Output is correct
38 Correct 499 ms 26324 KB Output is correct
39 Correct 251 ms 26812 KB Output is correct
40 Correct 338 ms 28804 KB Output is correct
41 Correct 670 ms 29780 KB Output is correct
42 Correct 913 ms 29852 KB Output is correct
43 Correct 500 ms 29780 KB Output is correct
44 Correct 679 ms 29792 KB Output is correct
45 Correct 913 ms 29780 KB Output is correct
46 Correct 465 ms 29788 KB Output is correct
47 Correct 778 ms 29536 KB Output is correct
48 Correct 530 ms 29780 KB Output is correct
49 Correct 74 ms 25072 KB Output is correct
50 Correct 93 ms 27304 KB Output is correct
51 Correct 107 ms 29784 KB Output is correct
52 Correct 113 ms 29792 KB Output is correct
53 Correct 62 ms 26048 KB Output is correct
54 Correct 79 ms 29780 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 1026 ms 27836 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 13148 KB Output is correct
2 Correct 6 ms 13308 KB Output is correct
3 Correct 5 ms 13148 KB Output is correct
4 Correct 6 ms 13148 KB Output is correct
5 Correct 4 ms 13148 KB Output is correct
6 Correct 4 ms 13148 KB Output is correct
7 Correct 6 ms 13304 KB Output is correct
8 Correct 5 ms 13308 KB Output is correct
9 Correct 6 ms 13148 KB Output is correct
10 Correct 6 ms 13256 KB Output is correct
11 Correct 8 ms 13148 KB Output is correct
12 Correct 6 ms 13148 KB Output is correct
13 Correct 5 ms 13148 KB Output is correct
14 Correct 5 ms 13148 KB Output is correct
15 Correct 6 ms 13148 KB Output is correct
16 Correct 5 ms 13148 KB Output is correct
17 Correct 5 ms 13148 KB Output is correct
18 Correct 5 ms 13148 KB Output is correct
19 Correct 5 ms 13144 KB Output is correct
20 Correct 5 ms 13148 KB Output is correct
21 Correct 5 ms 13148 KB Output is correct
22 Correct 5 ms 13312 KB Output is correct
23 Correct 5 ms 13148 KB Output is correct
24 Correct 6 ms 13276 KB Output is correct
25 Correct 4 ms 13004 KB Output is correct
26 Correct 5 ms 13412 KB Output is correct
27 Correct 6 ms 13148 KB Output is correct
28 Correct 5 ms 13292 KB Output is correct
29 Correct 6 ms 13260 KB Output is correct
30 Correct 6 ms 13148 KB Output is correct
31 Correct 5 ms 13256 KB Output is correct
32 Correct 6 ms 13148 KB Output is correct
33 Correct 4 ms 13148 KB Output is correct
34 Correct 5 ms 13148 KB Output is correct
35 Correct 6 ms 13148 KB Output is correct
36 Correct 5 ms 13148 KB Output is correct
37 Correct 5 ms 13148 KB Output is correct
38 Correct 6 ms 13148 KB Output is correct
39 Correct 78 ms 30072 KB Output is correct
40 Correct 73 ms 29788 KB Output is correct
41 Correct 81 ms 29780 KB Output is correct
42 Correct 76 ms 29788 KB Output is correct
43 Correct 75 ms 29940 KB Output is correct
44 Correct 72 ms 29788 KB Output is correct
45 Correct 40 ms 28540 KB Output is correct
46 Correct 44 ms 29276 KB Output is correct
47 Correct 77 ms 29784 KB Output is correct
48 Correct 85 ms 29784 KB Output is correct
49 Correct 74 ms 29780 KB Output is correct
50 Correct 81 ms 29852 KB Output is correct
51 Correct 72 ms 28044 KB Output is correct
52 Correct 75 ms 29808 KB Output is correct
53 Correct 83 ms 29648 KB Output is correct
54 Correct 88 ms 29784 KB Output is correct
55 Correct 735 ms 28048 KB Output is correct
56 Correct 499 ms 26324 KB Output is correct
57 Correct 251 ms 26812 KB Output is correct
58 Correct 338 ms 28804 KB Output is correct
59 Correct 670 ms 29780 KB Output is correct
60 Correct 913 ms 29852 KB Output is correct
61 Correct 500 ms 29780 KB Output is correct
62 Correct 679 ms 29792 KB Output is correct
63 Correct 913 ms 29780 KB Output is correct
64 Correct 465 ms 29788 KB Output is correct
65 Correct 778 ms 29536 KB Output is correct
66 Correct 530 ms 29780 KB Output is correct
67 Correct 74 ms 25072 KB Output is correct
68 Correct 93 ms 27304 KB Output is correct
69 Correct 107 ms 29784 KB Output is correct
70 Correct 113 ms 29792 KB Output is correct
71 Correct 62 ms 26048 KB Output is correct
72 Correct 79 ms 29780 KB Output is correct
73 Execution timed out 1026 ms 27836 KB Time limit exceeded
74 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 13148 KB Output is correct
2 Correct 6 ms 13308 KB Output is correct
3 Correct 5 ms 13148 KB Output is correct
4 Correct 6 ms 13148 KB Output is correct
5 Correct 4 ms 13148 KB Output is correct
6 Correct 4 ms 13148 KB Output is correct
7 Correct 6 ms 13304 KB Output is correct
8 Correct 5 ms 13308 KB Output is correct
9 Correct 6 ms 13148 KB Output is correct
10 Correct 6 ms 13256 KB Output is correct
11 Correct 8 ms 13148 KB Output is correct
12 Correct 6 ms 13148 KB Output is correct
13 Correct 5 ms 13148 KB Output is correct
14 Correct 5 ms 13148 KB Output is correct
15 Correct 6 ms 13148 KB Output is correct
16 Correct 5 ms 13148 KB Output is correct
17 Correct 5 ms 13148 KB Output is correct
18 Correct 5 ms 13148 KB Output is correct
19 Correct 5 ms 13144 KB Output is correct
20 Correct 5 ms 13148 KB Output is correct
21 Correct 5 ms 13148 KB Output is correct
22 Correct 5 ms 13312 KB Output is correct
23 Correct 5 ms 13148 KB Output is correct
24 Correct 6 ms 13276 KB Output is correct
25 Correct 4 ms 13004 KB Output is correct
26 Correct 5 ms 13412 KB Output is correct
27 Correct 6 ms 13148 KB Output is correct
28 Correct 5 ms 13292 KB Output is correct
29 Correct 6 ms 13260 KB Output is correct
30 Correct 6 ms 13148 KB Output is correct
31 Correct 5 ms 13256 KB Output is correct
32 Correct 6 ms 13148 KB Output is correct
33 Correct 4 ms 13148 KB Output is correct
34 Correct 5 ms 13148 KB Output is correct
35 Correct 6 ms 13148 KB Output is correct
36 Correct 5 ms 13148 KB Output is correct
37 Correct 5 ms 13148 KB Output is correct
38 Correct 6 ms 13148 KB Output is correct
39 Correct 78 ms 30072 KB Output is correct
40 Correct 73 ms 29788 KB Output is correct
41 Correct 81 ms 29780 KB Output is correct
42 Correct 76 ms 29788 KB Output is correct
43 Correct 75 ms 29940 KB Output is correct
44 Correct 72 ms 29788 KB Output is correct
45 Correct 40 ms 28540 KB Output is correct
46 Correct 44 ms 29276 KB Output is correct
47 Correct 77 ms 29784 KB Output is correct
48 Correct 85 ms 29784 KB Output is correct
49 Correct 74 ms 29780 KB Output is correct
50 Correct 81 ms 29852 KB Output is correct
51 Correct 72 ms 28044 KB Output is correct
52 Correct 75 ms 29808 KB Output is correct
53 Correct 83 ms 29648 KB Output is correct
54 Correct 88 ms 29784 KB Output is correct
55 Execution timed out 1043 ms 73036 KB Time limit exceeded
56 Halted 0 ms 0 KB -