Submission #1082409

# Submission time Handle Problem Language Result Execution time Memory
1082409 2024-08-31T09:56:01 Z binminh01 Food Court (JOI21_foodcourt) C++17
29 / 100
1000 ms 77832 KB
#include<bits/allocator.h>
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,fma,bmi,bmi2,popcnt,lzcnt")

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define int128 __int128_t
#define double long double
#define gcd __gcd
#define lcm(a, b) ((a)/gcd(a, b)*(b))
#define sqrt sqrtl
#define log2 log2l
#define log10 log10l
#define floor floorl
#define to_string str
#define yes cout << "YES"
#define no cout << "NO"
#define trav(i, a) for (auto &i: (a))
#define all(a) (a).begin(), (a).end()
#define rall(a) (a).rbegin(), (a).rend()
#define sz(a) (int)a.size()
#define Max(a) *max_element(all(a))
#define Min(a) *min_element(all(a))
#define Find(a, n) (find(all(a), n) - a.begin())
#define Count(a, n) count(all(a), n)
#define Upper(a, n) (upper_bound(all(a), n) - a.begin())
#define Lower(a, n) (lower_bound(all(a), n) - a.begin())
#define next_perm(a) next_permutation(all(a))
#define prev_perm(a) prev_permutation(all(a))
#define sorted(a) is_sorted(all(a))
#define sum(a) accumulate(all(a), 0)
#define sumll(a) accumulate(all(a), 0ll)
#define Sort(a) sort(all(a))
#define Reverse(a) reverse(all(a))
#define Unique(a) Sort(a), (a).resize(unique(all(a)) - a.begin())
#define pb push_back
#define eb emplace_back
#define popcount __builtin_popcount
#define popcountll __builtin_popcountll
#define clz __builtin_clz
#define clzll __buitlin_clzll
#define ctz __builtin_ctz
#define ctzll __builtin_ctzll
#define open(s) freopen(s, "r", stdin)
#define write(s) freopen(s, "w", stdout)
#define fileopen(s) open((string(s) + ".inp").c_str()), write((string(s) + ".out").c_str());
#define For(i, a, b) for (auto i = (a); i < (b); i++)
#define Fore(i, a, b) for (auto i = (a); i >= (b); i--)
#define FOR(i, a, b) for (auto i = (a); i <= (b); i++)
#define ret(s) return void(cout << s);

const int mod = 1e9 + 7, mod2 = 998244353;
const double PI = acos(-1), eps = 1e-9;
const ull npos = string::npos;
const int dx[] = {0, 0, -1, 1}, dy[] = {-1, 1, 0, 0};
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using cd = complex<double>;
mt19937 mt(chrono::system_clock::now().time_since_epoch().count());
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<ll> vll;
typedef vector<vll> vvll;
typedef vector<double> vdo;
typedef vector<vdo> vvdo;
typedef vector<string> vs;
typedef vector<pii> vpair;
typedef vector<vpair> vvpair;
typedef vector<bool> vb;
typedef vector<vb> vvb;
typedef vector<char> vc;
typedef vector<vc> vvc;
typedef vector<cd> vcd;
typedef priority_queue<int> pq;
typedef priority_queue<int, vi, greater<int>> pqg;
typedef priority_queue<ll> pqll;
typedef priority_queue<ll, vll, greater<ll>> pqgll;

ll add(ll a, ll b, int m) {if (a >= m) a%=m;if (b >= m) b%=m;a+=b;return a >= m ? a - m: a;}
ll sub(ll a, ll b, int m) {if (a >= m) a%=m;if (b >= m) b%=m;a-=b;return a < 0 ? a + m: a;}
ll mul(ll a, ll b, int m) {if (a >= m) a%=m;if (b >= m) b%=m;return a*b % m;}
ll bin_mul(ll a, ll b, ll m) {if (a >= m) a%=m;if (b >= m) b%=m;ll x = 0;while (b) {if (b & 1) x = (x + a) % m;a = (a + a) % m;b>>=1;}return x;}
ll bin_pow(ll a, ll b, ll m) {ll x = 1;if (a >= m) a%=m; while (b) {if (b & 1) x = bin_mul(x, a, m);a = bin_mul(a, a, m);b>>=1;}return x;}
ll power(ll a, ll b, int m) {ll x = 1;if (a >= m) a%=m; while (b) {if (b & 1) x = x*a % m;a = a*a % m;b>>=1;}return x;}
ll power(ll a, ll b) {ll x = 1;while (b) {if (b & 1) x = x*a;a = a*a;b>>=1;}return x;}
ll ceil(ll a, ll b) {return (a + b - 1)/b;}
ll to_int(const string &s) {ll x = 0; for (int i = (s[0] == '-'); i < sz(s); i++) x = x*10 + s[i] - '0';return x*(s[0] == '-' ? -1: 1);}
bool is_prime(ll n) {if (n < 2) return 0;if (n < 4) return 1;if (n % 2 == 0 || n % 3 == 0) return 0;for (ll i = 5; i*i <= n; i+=6) {if(n % i == 0 || n % (i + 2) == 0) return 0;}return 1;}
bool is_square(ll n) {ll k = sqrt(n); return k*k == n;}
ll factorial(int n) {ll x = 1;for (int i = 2; i <= n; i++) x*=i;return x;}
ll factorial(int n, int m) {ll x = 1;for (ll i = 2; i <= n; i++) x = x*i % m;return x;}
bool is_power(ll n, ll k) {while (n % k == 0) n/=k;return n == 1ll;}
string str(ll n) {if (n == 0) return "0"; string s = ""; bool c = 0; if (n < 0) c = 1, n = -n; while (n) {s+=n % 10 + '0'; n/=10;} if (c) s+='-'; Reverse(s); return s;}
string repeat(const string &s, int n) {if (n < 0) return ""; string x = ""; while (n--) x+=s; return x;}
string bin(ll n) {string s = ""; while (n) {s+=(n & 1) + '0'; n>>=1;} Reverse(s); return s;}
void sieve(vector<bool> &a) {int n = a.size(); a[0] = a[1] = 0; for (int i = 4; i < n; i+=2) a[i] = 0; for (int i = 3; i*i < n; i+=2) {if (a[i]) {for (int j = i*i; j < n; j+=(i << 1)) a[j] = 0;}}}
void sieve(bool a[], int n) {a[0] = a[1] = 0; for (int i = 4; i < n; i+=2) a[i] = 0; for (int i = 3; i*i < n; i+=2) {if (a[i]) {for (int j = i*i; j < n; j+=(i << 1)) a[j] = 0;}}}
void sieve(vector<int> &a) {int n = a.size(); for (int i = 2; i < n; i+=2) a[i] = 2; for (int i = 3; i*i < n; i+=2) {if (!a[i]) {for (int j = i; j < n; j+=(i << 1)) a[j] = i;}} for (int i = 3; i < n; i+=2) {if (!a[i]) a[i] = i;}}
void sieve(int a[], int n) {for (int i = 2; i < n; i+=2) a[i] = 2; for (int i = 3; i*i < n; i+=2) {if (!a[i]) {for (int j = i; j < n; j+=(i << 1)) a[j] = i;}} for (int i = 3; i < n; i+=2) {if (!a[i]) a[i] = i;}}
vector<pii> factorize(int n) {vector<pii> a; for (int i = 2; i*i <= n; i++) {if (n % i == 0) {int k = 0; while (n % i == 0) k++, n/=i; a.emplace_back(i, k);}} if (n > 1) a.emplace_back(n, 1); return a;}
int rand(int l, int r) {return uniform_int_distribution<int>(l, r)(mt);}
int Log2(int n) {return 31 - __builtin_clz(n);}
template<class T> void compress(vector<T> &a) {vector<T> b; for (T &i: a) b.push_back(i); sort(all(b)); b.resize(unique(all(b)) - b.begin()); for (T &i: a) i = lower_bound(all(b), i) - b.begin() + 1;}

template<class A, class B> istream& operator>>(istream& in, pair<A, B> &p) {in >> p.first >> p.second; return in;}
template<class A, class B> ostream& operator<<(ostream& out, const pair<A, B> &p) {out << p.first << ' ' << p.second; return out;}
template<class T> istream& operator>>(istream& in, vector<T> &a) {for (auto &i: a) in >> i; return in;}
template<class T> ostream& operator<<(ostream& out, const vector<T> &a) {for (auto &i: a) out << i << ' '; return out;}
template<class T> istream& operator>>(istream& in, vector<vector<T>> &a) {for (auto &i: a) in >> i; return in;}
template<class T> ostream& operator<<(ostream& out, const vector<vector<T>> &a) {for (auto &i: a) out << i << '\n'; return out;}
template<class T> istream& operator>>(istream& in, deque<T> &a) {for (auto &i: a) in >> i; return in;}
template<class T> ostream& operator<<(ostream& out, const deque<T> &a) {for (auto &i: a) out << i << ' '; return out;}
// istream& operator>>(istream& in, __int128_t &a) {string s; in >> s; a = 0; for (auto &i: s) a = a*10 + (i - '0'); return in;}
// ostream& operator<<(ostream& out, __int128_t a) {string s = ""; while (a > 0) {s+=(int)(a % 10) + '0'; a/=10;} Reverse(s); out << s; return out;}

const int N = 250001;
using ii = pair<ll, int>;
struct segtree_lazy_min_recursive {
    int n;
    ii t[4*N];
    ll z[4*N];
    segtree_lazy_min_recursive(int n): n(n) {
        For(i,0,4*N) t[i] = {1e18, 0};
        memset(z, 0, sizeof(z));
    }
    void build(const vll &a, int x, int lx, int rx) {
        if (lx == rx) {
            t[x] = {a[lx], lx};
            return;
        }
        int m = (lx + rx) >> 1;
        build(a, x << 1, lx, m);
        build(a, x << 1|1, m + 1, rx);
        t[x] = min(t[x << 1], t[x << 1|1]);
    }
    void down(int i) {
        t[i << 1].first+=z[i], t[i << 1|1].first+=z[i];
        z[i << 1]+=z[i], z[i << 1|1]+=z[i];
        z[i] = 0;
    }
    void set(int l, int r, int x, int lx, int rx, ll d) {
        if (lx > r || rx < l) return;
        if (lx >= l && rx <= r) {t[x].first+=d; z[x]+=d; return;}
        down(x);
        int m = (lx + rx) >> 1;
        set(l, r, x << 1, lx, m, d);
        set(l, r, x << 1|1, m + 1, rx, d);
        t[x] = min(t[x << 1], t[x << 1|1]);
    }
    ii get(int l, int r, int x, int lx, int rx) {
        if (lx > r || rx < l) return {1e18, 0};
        if (lx >= l && rx <= r) return t[x];
        down(x);
        int m = (lx + rx) >> 1;
        return min(get(l, r, x << 1, lx, m), get(l, r, x << 1|1, m + 1, rx));
    }
    void build(const vll &a) {build(a, 1, 0, n);}
    void set(int l, int r, ll d) {set(l, r, 1, 0, n, d);}
    ii get(int l, int r) {return get(l, r, 1, 0, n);}
};
struct segtree_lazy_sum_recursive {
    int n;
    ll t[4*N], z[4*N];
    ll merge(ll a, ll b) {return a + b;}
    segtree_lazy_sum_recursive(int n): n(n) {
        memset(t, 0, sizeof(t)); memset(z, 0, sizeof(z));
    }
    void build(const vector<ll> &a, int x, int lx, int rx) {
        if (lx == rx) {
            t[x] = a[lx];
            return;
        }
        int m = (lx + rx) >> 1;
        build(a, x << 1, lx, m);
        build(a, x << 1|1, m + 1, rx);
        t[x] = merge(t[x << 1], t[x << 1|1]);
    }
    void down(int i, int l, int r) {
        ll k = z[i];
        int m = (l + r) >> 1;
        if (k != 0) {
            t[i << 1]+=k*(m - l + 1);
            t[i << 1|1]+=k*(r - m);
            z[i << 1]+=k; z[i << 1|1]+=k;
            z[i] = 0;
        }
    }
    void set(int l, int r, int x, int lx, int rx, ll d) {
        if (lx > r || rx < l) return;
        if (lx >= l && rx <= r) {t[x]+=d*(rx - lx + 1); z[x]+=d; return;}
        down(x, lx, rx);
        int m = (lx + rx) >> 1;
        set(l, r, x << 1, lx, m, d);
        set(l, r, x << 1|1, m + 1, rx, d);
        t[x] = merge(t[x << 1], t[x << 1|1]);
    }
    ll get(int l, int r, int x, int lx, int rx) {
        if (lx > r || rx < l) return 0;
        if (lx >= l && rx <= r) return t[x];
        down(x, lx, rx);
        int m = (lx + rx) >> 1;
        return merge(get(l, r, x << 1, lx, m), get(l, r, x << 1|1, m + 1, rx));
    }
    ll get(int i, int x, int l, int r) {
        if (l == r) return t[x];
        down(x, l, r);
        int m = (l + r) >> 1;
        return i <= m ? get(i, x << 1, l, m): get(i, x << 1|1, m + 1, r);
    }
    int walk(int i, int x, int l, int r, ll d) {
        if (r < i || t[x] < d) return -1;
        if (l == r) return l;
        down(x, l, r);
        int m = (l + r) >> 1;
        int w = walk(i, x << 1, l, m, d);
        if (w == -1) w = walk(i, x << 1|1, m + 1, r, d);
        return w;
    }
    void build(const vector<ll> &a) {build(a, 1, 0, n);}
    void set(int l, int r, ll d) {set(l, r, 1, 0, n, d);}
    ll get(int l, int r) {return get(l, r, 1, 0, n);}
    ll get(int i) {return get(i, 1, 0, n);}
    int walk(int i, ll d) {return walk(i, 1, 0, n, d);}
};
struct que {
    int o, i, k;
    que(int o = 0, int i = 0, int k = 0): o(o), i(i), k(k) {}
};
int g[N], f[N];
vector<que> w[N];
vector<ii> a[N];
bool p[N];
int main() {
    ios_base::sync_with_stdio(0); cin.tie(NULL); cout.tie(NULL);
    cout << fixed << setprecision(10);
    int n, m, q; cin >> n >> m >> q;
    segtree_lazy_min_recursive t(q);
    segtree_lazy_sum_recursive t1(q), t2(q);
    t.build(vll(q + 1));
    FOR(i,1,q){
        int o; cin >> o;
        if (o == 1) {
            int l, r, c, k; cin >> l >> r >> c >> k;
            g[i] = c;
            w[l].eb(o, i, k); w[r + 1].eb(o, i, -k);
        } else if (o == 2) {
            int l, r, k; cin >> l >> r >> k;
            w[l].eb(o, i, -k); w[r + 1].eb(o, i, k);
        } else {
            int j; ll v; cin >> j >> v;
            p[i] = 1;
            a[j].eb(v, i);
        }
    }
    FOR(i,1,n){
        for (auto [o, j, k]: w[i]) {
            t.set(j, q, k);
            if (o == 1) t1.set(j, q, k);
            else t2.set(j, q, -k);
        }
        for (auto [v, j]: a[i]) {
            auto [u, l] = t.get(0, j);
            if (t.get(j, j).first < u + v) continue;
            v+=t2.get(j) + u;
            f[j] = g[t1.walk(l + 1, v)];
        }
    }
    FOR(i,1,q){
        if (p[i]) cout << f[i] << '\n';
    }
    cerr << "\nProcess returned 0 (0x0)   execution time :  " << 0.001*clock() << " s";
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 37 ms 67420 KB Output is correct
2 Correct 38 ms 67412 KB Output is correct
3 Correct 38 ms 67412 KB Output is correct
4 Correct 38 ms 67616 KB Output is correct
5 Correct 38 ms 67408 KB Output is correct
6 Correct 38 ms 67408 KB Output is correct
7 Correct 39 ms 67408 KB Output is correct
8 Correct 39 ms 67420 KB Output is correct
9 Correct 37 ms 67564 KB Output is correct
10 Correct 39 ms 67412 KB Output is correct
11 Correct 36 ms 67420 KB Output is correct
12 Correct 40 ms 67408 KB Output is correct
13 Correct 37 ms 67672 KB Output is correct
14 Correct 35 ms 67420 KB Output is correct
15 Correct 34 ms 67412 KB Output is correct
16 Correct 36 ms 67564 KB Output is correct
17 Correct 43 ms 67408 KB Output is correct
18 Correct 36 ms 67408 KB Output is correct
19 Correct 36 ms 67416 KB Output is correct
20 Correct 38 ms 67420 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 37 ms 67420 KB Output is correct
2 Correct 38 ms 67412 KB Output is correct
3 Correct 38 ms 67412 KB Output is correct
4 Correct 38 ms 67616 KB Output is correct
5 Correct 38 ms 67408 KB Output is correct
6 Correct 38 ms 67408 KB Output is correct
7 Correct 39 ms 67408 KB Output is correct
8 Correct 39 ms 67420 KB Output is correct
9 Correct 37 ms 67564 KB Output is correct
10 Correct 39 ms 67412 KB Output is correct
11 Correct 36 ms 67420 KB Output is correct
12 Correct 40 ms 67408 KB Output is correct
13 Correct 37 ms 67672 KB Output is correct
14 Correct 35 ms 67420 KB Output is correct
15 Correct 34 ms 67412 KB Output is correct
16 Correct 36 ms 67564 KB Output is correct
17 Correct 43 ms 67408 KB Output is correct
18 Correct 36 ms 67408 KB Output is correct
19 Correct 36 ms 67416 KB Output is correct
20 Correct 38 ms 67420 KB Output is correct
21 Correct 38 ms 67420 KB Output is correct
22 Correct 39 ms 67408 KB Output is correct
23 Correct 37 ms 67560 KB Output is correct
24 Correct 41 ms 67412 KB Output is correct
25 Correct 37 ms 67408 KB Output is correct
26 Correct 42 ms 67400 KB Output is correct
27 Correct 40 ms 67416 KB Output is correct
28 Correct 38 ms 67420 KB Output is correct
29 Correct 38 ms 67412 KB Output is correct
30 Correct 39 ms 67524 KB Output is correct
31 Correct 40 ms 67408 KB Output is correct
32 Correct 37 ms 67420 KB Output is correct
33 Correct 36 ms 67408 KB Output is correct
34 Correct 36 ms 67408 KB Output is correct
35 Correct 36 ms 67420 KB Output is correct
36 Correct 38 ms 67676 KB Output is correct
37 Correct 37 ms 67392 KB Output is correct
38 Correct 38 ms 67416 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 103 ms 70356 KB Output is correct
2 Correct 100 ms 70364 KB Output is correct
3 Correct 100 ms 70228 KB Output is correct
4 Correct 101 ms 70388 KB Output is correct
5 Correct 103 ms 70180 KB Output is correct
6 Correct 106 ms 70308 KB Output is correct
7 Correct 62 ms 70148 KB Output is correct
8 Correct 75 ms 70572 KB Output is correct
9 Correct 103 ms 70228 KB Output is correct
10 Correct 105 ms 70376 KB Output is correct
11 Correct 123 ms 70304 KB Output is correct
12 Correct 101 ms 70228 KB Output is correct
13 Correct 114 ms 69900 KB Output is correct
14 Correct 105 ms 70172 KB Output is correct
15 Correct 107 ms 70236 KB Output is correct
16 Correct 111 ms 70228 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 1064 ms 77832 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 37 ms 67420 KB Output is correct
2 Correct 38 ms 67412 KB Output is correct
3 Correct 38 ms 67412 KB Output is correct
4 Correct 38 ms 67616 KB Output is correct
5 Correct 38 ms 67408 KB Output is correct
6 Correct 38 ms 67408 KB Output is correct
7 Correct 39 ms 67408 KB Output is correct
8 Correct 39 ms 67420 KB Output is correct
9 Correct 37 ms 67564 KB Output is correct
10 Correct 39 ms 67412 KB Output is correct
11 Correct 36 ms 67420 KB Output is correct
12 Correct 40 ms 67408 KB Output is correct
13 Correct 37 ms 67672 KB Output is correct
14 Correct 35 ms 67420 KB Output is correct
15 Correct 34 ms 67412 KB Output is correct
16 Correct 36 ms 67564 KB Output is correct
17 Correct 43 ms 67408 KB Output is correct
18 Correct 36 ms 67408 KB Output is correct
19 Correct 36 ms 67416 KB Output is correct
20 Correct 38 ms 67420 KB Output is correct
21 Correct 103 ms 70356 KB Output is correct
22 Correct 100 ms 70364 KB Output is correct
23 Correct 100 ms 70228 KB Output is correct
24 Correct 101 ms 70388 KB Output is correct
25 Correct 103 ms 70180 KB Output is correct
26 Correct 106 ms 70308 KB Output is correct
27 Correct 62 ms 70148 KB Output is correct
28 Correct 75 ms 70572 KB Output is correct
29 Correct 103 ms 70228 KB Output is correct
30 Correct 105 ms 70376 KB Output is correct
31 Correct 123 ms 70304 KB Output is correct
32 Correct 101 ms 70228 KB Output is correct
33 Correct 114 ms 69900 KB Output is correct
34 Correct 105 ms 70172 KB Output is correct
35 Correct 107 ms 70236 KB Output is correct
36 Correct 111 ms 70228 KB Output is correct
37 Correct 679 ms 70048 KB Output is correct
38 Correct 490 ms 69820 KB Output is correct
39 Correct 267 ms 70064 KB Output is correct
40 Correct 390 ms 70512 KB Output is correct
41 Correct 590 ms 70128 KB Output is correct
42 Correct 793 ms 70228 KB Output is correct
43 Correct 466 ms 70228 KB Output is correct
44 Correct 592 ms 70320 KB Output is correct
45 Correct 814 ms 70468 KB Output is correct
46 Correct 459 ms 70228 KB Output is correct
47 Correct 723 ms 69972 KB Output is correct
48 Correct 524 ms 70228 KB Output is correct
49 Correct 101 ms 69600 KB Output is correct
50 Correct 120 ms 70036 KB Output is correct
51 Correct 129 ms 70424 KB Output is correct
52 Correct 126 ms 70472 KB Output is correct
53 Correct 92 ms 69824 KB Output is correct
54 Correct 109 ms 70188 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 917 ms 70012 KB Output is correct
2 Execution timed out 1093 ms 69976 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 37 ms 67420 KB Output is correct
2 Correct 38 ms 67412 KB Output is correct
3 Correct 38 ms 67412 KB Output is correct
4 Correct 38 ms 67616 KB Output is correct
5 Correct 38 ms 67408 KB Output is correct
6 Correct 38 ms 67408 KB Output is correct
7 Correct 39 ms 67408 KB Output is correct
8 Correct 39 ms 67420 KB Output is correct
9 Correct 37 ms 67564 KB Output is correct
10 Correct 39 ms 67412 KB Output is correct
11 Correct 36 ms 67420 KB Output is correct
12 Correct 40 ms 67408 KB Output is correct
13 Correct 37 ms 67672 KB Output is correct
14 Correct 35 ms 67420 KB Output is correct
15 Correct 34 ms 67412 KB Output is correct
16 Correct 36 ms 67564 KB Output is correct
17 Correct 43 ms 67408 KB Output is correct
18 Correct 36 ms 67408 KB Output is correct
19 Correct 36 ms 67416 KB Output is correct
20 Correct 38 ms 67420 KB Output is correct
21 Correct 38 ms 67420 KB Output is correct
22 Correct 39 ms 67408 KB Output is correct
23 Correct 37 ms 67560 KB Output is correct
24 Correct 41 ms 67412 KB Output is correct
25 Correct 37 ms 67408 KB Output is correct
26 Correct 42 ms 67400 KB Output is correct
27 Correct 40 ms 67416 KB Output is correct
28 Correct 38 ms 67420 KB Output is correct
29 Correct 38 ms 67412 KB Output is correct
30 Correct 39 ms 67524 KB Output is correct
31 Correct 40 ms 67408 KB Output is correct
32 Correct 37 ms 67420 KB Output is correct
33 Correct 36 ms 67408 KB Output is correct
34 Correct 36 ms 67408 KB Output is correct
35 Correct 36 ms 67420 KB Output is correct
36 Correct 38 ms 67676 KB Output is correct
37 Correct 37 ms 67392 KB Output is correct
38 Correct 38 ms 67416 KB Output is correct
39 Correct 103 ms 70356 KB Output is correct
40 Correct 100 ms 70364 KB Output is correct
41 Correct 100 ms 70228 KB Output is correct
42 Correct 101 ms 70388 KB Output is correct
43 Correct 103 ms 70180 KB Output is correct
44 Correct 106 ms 70308 KB Output is correct
45 Correct 62 ms 70148 KB Output is correct
46 Correct 75 ms 70572 KB Output is correct
47 Correct 103 ms 70228 KB Output is correct
48 Correct 105 ms 70376 KB Output is correct
49 Correct 123 ms 70304 KB Output is correct
50 Correct 101 ms 70228 KB Output is correct
51 Correct 114 ms 69900 KB Output is correct
52 Correct 105 ms 70172 KB Output is correct
53 Correct 107 ms 70236 KB Output is correct
54 Correct 111 ms 70228 KB Output is correct
55 Correct 679 ms 70048 KB Output is correct
56 Correct 490 ms 69820 KB Output is correct
57 Correct 267 ms 70064 KB Output is correct
58 Correct 390 ms 70512 KB Output is correct
59 Correct 590 ms 70128 KB Output is correct
60 Correct 793 ms 70228 KB Output is correct
61 Correct 466 ms 70228 KB Output is correct
62 Correct 592 ms 70320 KB Output is correct
63 Correct 814 ms 70468 KB Output is correct
64 Correct 459 ms 70228 KB Output is correct
65 Correct 723 ms 69972 KB Output is correct
66 Correct 524 ms 70228 KB Output is correct
67 Correct 101 ms 69600 KB Output is correct
68 Correct 120 ms 70036 KB Output is correct
69 Correct 129 ms 70424 KB Output is correct
70 Correct 126 ms 70472 KB Output is correct
71 Correct 92 ms 69824 KB Output is correct
72 Correct 109 ms 70188 KB Output is correct
73 Correct 917 ms 70012 KB Output is correct
74 Execution timed out 1093 ms 69976 KB Time limit exceeded
75 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 37 ms 67420 KB Output is correct
2 Correct 38 ms 67412 KB Output is correct
3 Correct 38 ms 67412 KB Output is correct
4 Correct 38 ms 67616 KB Output is correct
5 Correct 38 ms 67408 KB Output is correct
6 Correct 38 ms 67408 KB Output is correct
7 Correct 39 ms 67408 KB Output is correct
8 Correct 39 ms 67420 KB Output is correct
9 Correct 37 ms 67564 KB Output is correct
10 Correct 39 ms 67412 KB Output is correct
11 Correct 36 ms 67420 KB Output is correct
12 Correct 40 ms 67408 KB Output is correct
13 Correct 37 ms 67672 KB Output is correct
14 Correct 35 ms 67420 KB Output is correct
15 Correct 34 ms 67412 KB Output is correct
16 Correct 36 ms 67564 KB Output is correct
17 Correct 43 ms 67408 KB Output is correct
18 Correct 36 ms 67408 KB Output is correct
19 Correct 36 ms 67416 KB Output is correct
20 Correct 38 ms 67420 KB Output is correct
21 Correct 38 ms 67420 KB Output is correct
22 Correct 39 ms 67408 KB Output is correct
23 Correct 37 ms 67560 KB Output is correct
24 Correct 41 ms 67412 KB Output is correct
25 Correct 37 ms 67408 KB Output is correct
26 Correct 42 ms 67400 KB Output is correct
27 Correct 40 ms 67416 KB Output is correct
28 Correct 38 ms 67420 KB Output is correct
29 Correct 38 ms 67412 KB Output is correct
30 Correct 39 ms 67524 KB Output is correct
31 Correct 40 ms 67408 KB Output is correct
32 Correct 37 ms 67420 KB Output is correct
33 Correct 36 ms 67408 KB Output is correct
34 Correct 36 ms 67408 KB Output is correct
35 Correct 36 ms 67420 KB Output is correct
36 Correct 38 ms 67676 KB Output is correct
37 Correct 37 ms 67392 KB Output is correct
38 Correct 38 ms 67416 KB Output is correct
39 Correct 103 ms 70356 KB Output is correct
40 Correct 100 ms 70364 KB Output is correct
41 Correct 100 ms 70228 KB Output is correct
42 Correct 101 ms 70388 KB Output is correct
43 Correct 103 ms 70180 KB Output is correct
44 Correct 106 ms 70308 KB Output is correct
45 Correct 62 ms 70148 KB Output is correct
46 Correct 75 ms 70572 KB Output is correct
47 Correct 103 ms 70228 KB Output is correct
48 Correct 105 ms 70376 KB Output is correct
49 Correct 123 ms 70304 KB Output is correct
50 Correct 101 ms 70228 KB Output is correct
51 Correct 114 ms 69900 KB Output is correct
52 Correct 105 ms 70172 KB Output is correct
53 Correct 107 ms 70236 KB Output is correct
54 Correct 111 ms 70228 KB Output is correct
55 Execution timed out 1064 ms 77832 KB Time limit exceeded
56 Halted 0 ms 0 KB -