Submission #1082402

# Submission time Handle Problem Language Result Execution time Memory
1082402 2024-08-31T09:45:06 Z binminh01 Food Court (JOI21_foodcourt) C++17
29 / 100
1000 ms 78468 KB
#include<bits/allocator.h>
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,fma,bmi,bmi2,popcnt,lzcnt")

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define int128 __int128_t
#define double long double
#define gcd __gcd
#define lcm(a, b) ((a)/gcd(a, b)*(b))
#define sqrt sqrtl
#define log2 log2l
#define log10 log10l
#define floor floorl
#define to_string str
#define yes cout << "YES"
#define no cout << "NO"
#define trav(i, a) for (auto &i: (a))
#define all(a) (a).begin(), (a).end()
#define rall(a) (a).rbegin(), (a).rend()
#define sz(a) (int)a.size()
#define Max(a) *max_element(all(a))
#define Min(a) *min_element(all(a))
#define Find(a, n) (find(all(a), n) - a.begin())
#define Count(a, n) count(all(a), n)
#define Upper(a, n) (upper_bound(all(a), n) - a.begin())
#define Lower(a, n) (lower_bound(all(a), n) - a.begin())
#define next_perm(a) next_permutation(all(a))
#define prev_perm(a) prev_permutation(all(a))
#define sorted(a) is_sorted(all(a))
#define sum(a) accumulate(all(a), 0)
#define sumll(a) accumulate(all(a), 0ll)
#define Sort(a) sort(all(a))
#define Reverse(a) reverse(all(a))
#define Unique(a) Sort(a), (a).resize(unique(all(a)) - a.begin())
#define pb push_back
#define eb emplace_back
#define popcount __builtin_popcount
#define popcountll __builtin_popcountll
#define clz __builtin_clz
#define clzll __buitlin_clzll
#define ctz __builtin_ctz
#define ctzll __builtin_ctzll
#define open(s) freopen(s, "r", stdin)
#define write(s) freopen(s, "w", stdout)
#define fileopen(s) open((string(s) + ".inp").c_str()), write((string(s) + ".out").c_str());
#define For(i, a, b) for (auto i = (a); i < (b); i++)
#define Fore(i, a, b) for (auto i = (a); i >= (b); i--)
#define FOR(i, a, b) for (auto i = (a); i <= (b); i++)
#define ret(s) return void(cout << s);

const int mod = 1e9 + 7, mod2 = 998244353;
const double PI = acos(-1), eps = 1e-9;
const ull npos = string::npos;
const int dx[] = {0, 0, -1, 1}, dy[] = {-1, 1, 0, 0};
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using cd = complex<double>;
mt19937 mt(chrono::system_clock::now().time_since_epoch().count());
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<ll> vll;
typedef vector<vll> vvll;
typedef vector<double> vdo;
typedef vector<vdo> vvdo;
typedef vector<string> vs;
typedef vector<pii> vpair;
typedef vector<vpair> vvpair;
typedef vector<bool> vb;
typedef vector<vb> vvb;
typedef vector<char> vc;
typedef vector<vc> vvc;
typedef vector<cd> vcd;
typedef priority_queue<int> pq;
typedef priority_queue<int, vi, greater<int>> pqg;
typedef priority_queue<ll> pqll;
typedef priority_queue<ll, vll, greater<ll>> pqgll;

ll add(ll a, ll b, int m) {if (a >= m) a%=m;if (b >= m) b%=m;a+=b;return a >= m ? a - m: a;}
ll sub(ll a, ll b, int m) {if (a >= m) a%=m;if (b >= m) b%=m;a-=b;return a < 0 ? a + m: a;}
ll mul(ll a, ll b, int m) {if (a >= m) a%=m;if (b >= m) b%=m;return a*b % m;}
ll bin_mul(ll a, ll b, ll m) {if (a >= m) a%=m;if (b >= m) b%=m;ll x = 0;while (b) {if (b & 1) x = (x + a) % m;a = (a + a) % m;b>>=1;}return x;}
ll bin_pow(ll a, ll b, ll m) {ll x = 1;if (a >= m) a%=m; while (b) {if (b & 1) x = bin_mul(x, a, m);a = bin_mul(a, a, m);b>>=1;}return x;}
ll power(ll a, ll b, int m) {ll x = 1;if (a >= m) a%=m; while (b) {if (b & 1) x = x*a % m;a = a*a % m;b>>=1;}return x;}
ll power(ll a, ll b) {ll x = 1;while (b) {if (b & 1) x = x*a;a = a*a;b>>=1;}return x;}
ll ceil(ll a, ll b) {return (a + b - 1)/b;}
ll to_int(const string &s) {ll x = 0; for (int i = (s[0] == '-'); i < sz(s); i++) x = x*10 + s[i] - '0';return x*(s[0] == '-' ? -1: 1);}
bool is_prime(ll n) {if (n < 2) return 0;if (n < 4) return 1;if (n % 2 == 0 || n % 3 == 0) return 0;for (ll i = 5; i*i <= n; i+=6) {if(n % i == 0 || n % (i + 2) == 0) return 0;}return 1;}
bool is_square(ll n) {ll k = sqrt(n); return k*k == n;}
ll factorial(int n) {ll x = 1;for (int i = 2; i <= n; i++) x*=i;return x;}
ll factorial(int n, int m) {ll x = 1;for (ll i = 2; i <= n; i++) x = x*i % m;return x;}
bool is_power(ll n, ll k) {while (n % k == 0) n/=k;return n == 1ll;}
string str(ll n) {if (n == 0) return "0"; string s = ""; bool c = 0; if (n < 0) c = 1, n = -n; while (n) {s+=n % 10 + '0'; n/=10;} if (c) s+='-'; Reverse(s); return s;}
string repeat(const string &s, int n) {if (n < 0) return ""; string x = ""; while (n--) x+=s; return x;}
string bin(ll n) {string s = ""; while (n) {s+=(n & 1) + '0'; n>>=1;} Reverse(s); return s;}
void sieve(vector<bool> &a) {int n = a.size(); a[0] = a[1] = 0; for (int i = 4; i < n; i+=2) a[i] = 0; for (int i = 3; i*i < n; i+=2) {if (a[i]) {for (int j = i*i; j < n; j+=(i << 1)) a[j] = 0;}}}
void sieve(bool a[], int n) {a[0] = a[1] = 0; for (int i = 4; i < n; i+=2) a[i] = 0; for (int i = 3; i*i < n; i+=2) {if (a[i]) {for (int j = i*i; j < n; j+=(i << 1)) a[j] = 0;}}}
void sieve(vector<int> &a) {int n = a.size(); for (int i = 2; i < n; i+=2) a[i] = 2; for (int i = 3; i*i < n; i+=2) {if (!a[i]) {for (int j = i; j < n; j+=(i << 1)) a[j] = i;}} for (int i = 3; i < n; i+=2) {if (!a[i]) a[i] = i;}}
void sieve(int a[], int n) {for (int i = 2; i < n; i+=2) a[i] = 2; for (int i = 3; i*i < n; i+=2) {if (!a[i]) {for (int j = i; j < n; j+=(i << 1)) a[j] = i;}} for (int i = 3; i < n; i+=2) {if (!a[i]) a[i] = i;}}
vector<pii> factorize(int n) {vector<pii> a; for (int i = 2; i*i <= n; i++) {if (n % i == 0) {int k = 0; while (n % i == 0) k++, n/=i; a.emplace_back(i, k);}} if (n > 1) a.emplace_back(n, 1); return a;}
int rand(int l, int r) {return uniform_int_distribution<int>(l, r)(mt);}
int Log2(int n) {return 31 - __builtin_clz(n);}
template<class T> void compress(vector<T> &a) {vector<T> b; for (T &i: a) b.push_back(i); sort(all(b)); b.resize(unique(all(b)) - b.begin()); for (T &i: a) i = lower_bound(all(b), i) - b.begin() + 1;}

template<class A, class B> istream& operator>>(istream& in, pair<A, B> &p) {in >> p.first >> p.second; return in;}
template<class A, class B> ostream& operator<<(ostream& out, const pair<A, B> &p) {out << p.first << ' ' << p.second; return out;}
template<class T> istream& operator>>(istream& in, vector<T> &a) {for (auto &i: a) in >> i; return in;}
template<class T> ostream& operator<<(ostream& out, const vector<T> &a) {for (auto &i: a) out << i << ' '; return out;}
template<class T> istream& operator>>(istream& in, vector<vector<T>> &a) {for (auto &i: a) in >> i; return in;}
template<class T> ostream& operator<<(ostream& out, const vector<vector<T>> &a) {for (auto &i: a) out << i << '\n'; return out;}
template<class T> istream& operator>>(istream& in, deque<T> &a) {for (auto &i: a) in >> i; return in;}
template<class T> ostream& operator<<(ostream& out, const deque<T> &a) {for (auto &i: a) out << i << ' '; return out;}
// istream& operator>>(istream& in, __int128_t &a) {string s; in >> s; a = 0; for (auto &i: s) a = a*10 + (i - '0'); return in;}
// ostream& operator<<(ostream& out, __int128_t a) {string s = ""; while (a > 0) {s+=(int)(a % 10) + '0'; a/=10;} Reverse(s); out << s; return out;}

using ii = pair<ll, int>;
struct segtree_lazy_min_recursive {
    int n;
    vector<ii> t;
    vll z;
    segtree_lazy_min_recursive(int n): n(n) {
        t.resize(4*n + 5);
        z.resize(4*n + 5);
    }
    void build(const vll &a, int x, int lx, int rx) {
        if (lx == rx) {
            t[x] = {a[lx], lx};
            return;
        }
        int m = (lx + rx) >> 1;
        build(a, x << 1, lx, m);
        build(a, x << 1|1, m + 1, rx);
        t[x] = min(t[x << 1], t[x << 1|1]);
    }
    void down(int i) {
        t[i << 1].first+=z[i], t[i << 1|1].first+=z[i];
        z[i << 1]+=z[i], z[i << 1|1]+=z[i];
        z[i] = 0;
    }
    void set(int l, int r, int x, int lx, int rx, ll d) {
        if (lx > r || rx < l) return;
        if (lx >= l && rx <= r) {t[x].first+=d; z[x]+=d; return;}
        down(x);
        int m = (lx + rx) >> 1;
        set(l, r, x << 1, lx, m, d);
        set(l, r, x << 1|1, m + 1, rx, d);
        t[x] = min(t[x << 1], t[x << 1|1]);
    }
    ii get(int l, int r, int x, int lx, int rx) {
        if (lx > r || rx < l) return {1e18, 0};
        if (lx >= l && rx <= r) return t[x];
        down(x);
        int m = (lx + rx) >> 1;
        return min(get(l, r, x << 1, lx, m), get(l, r, x << 1|1, m + 1, rx));
    }
    void build(const vll &a) {build(a, 1, 0, n);}
    void set(int l, int r, ll d) {set(l, r, 1, 0, n, d);}
    ii get(int l, int r) {return get(l, r, 1, 0, n);}
};
struct segtree_lazy_sum_recursive {
    int n;
    vector<ll> t, z;
    ll merge(ll a, ll b) {return a + b;}
    segtree_lazy_sum_recursive(int n): n(n) {
        t.resize(4*n + 5);
        z.resize(4*n + 5);
    }
    void build(const vector<ll> &a, int x, int lx, int rx) {
        if (lx == rx) {
            t[x] = a[lx];
            return;
        }
        int m = (lx + rx) >> 1;
        build(a, x << 1, lx, m);
        build(a, x << 1|1, m + 1, rx);
        t[x] = merge(t[x << 1], t[x << 1|1]);
    }
    void down(int i, int l, int r) {
        ll k = z[i];
        int m = (l + r) >> 1;
        if (k != 0) {
            t[i << 1]+=k*(m - l + 1);
            t[i << 1|1]+=k*(r - m);
            z[i << 1]+=k; z[i << 1|1]+=k;
            z[i] = 0;
        }
    }
    void set(int l, int r, int x, int lx, int rx, ll d) {
        if (lx > r || rx < l) return;
        if (lx >= l && rx <= r) {t[x]+=d*(rx - lx + 1); z[x]+=d; return;}
        down(x, lx, rx);
        int m = (lx + rx) >> 1;
        set(l, r, x << 1, lx, m, d);
        set(l, r, x << 1|1, m + 1, rx, d);
        t[x] = merge(t[x << 1], t[x << 1|1]);
    }
    ll get(int l, int r, int x, int lx, int rx) {
        if (lx > r || rx < l) return 0;
        if (lx >= l && rx <= r) return t[x];
        down(x, lx, rx);
        int m = (lx + rx) >> 1;
        return merge(get(l, r, x << 1, lx, m), get(l, r, x << 1|1, m + 1, rx));
    }
    int walk(int i, int x, int l, int r, ll d) {
        if (r < i || t[x] < d) return -1;
        if (l == r) return l;
        down(x, l, r);
        int m = (l + r) >> 1;
        int w = walk(i, x << 1, l, m, d);
        if (w == -1) w = walk(i, x << 1|1, m + 1, r, d);
        return w;
    }
    void build(const vector<ll> &a) {build(a, 1, 0, n);}
    void set(int l, int r, ll d) {set(l, r, 1, 0, n, d);}
    ll get(int l, int r) {return get(l, r, 1, 0, n);}
    int walk(int i, ll d) {return walk(i, 1, 0, n, d);}
};
const int N = 250005;
struct que {
    int o, i, k;
    que(int o = 0, int i = 0, int k = 0): o(o), i(i), k(k) {}
};
int g[N], f[N];
vector<que> w[N];
vector<ii> a[N];
bool p[N];
int main() {
    ios_base::sync_with_stdio(0); cin.tie(NULL); cout.tie(NULL);
    cout << fixed << setprecision(10);
    int n, m, q; cin >> n >> m >> q;
    segtree_lazy_min_recursive t(q);
    segtree_lazy_sum_recursive t1(q), t2(q);
    t.build(vll(q + 1));
    FOR(i,1,q){
        int o; cin >> o;
        if (o == 1) {
            int l, r, c, k; cin >> l >> r >> c >> k;
            g[i] = c;
            w[l].eb(o, i, k); w[r + 1].eb(o, i, -k);
        } else if (o == 2) {
            int l, r, k; cin >> l >> r >> k;
            w[l].eb(o, i, -k); w[r + 1].eb(o, i, k);
        } else {
            int j; ll v; cin >> j >> v;
            p[i] = 1;
            a[j].eb(v, i);
        }
    }
    FOR(i,1,n){
        for (auto [o, j, k]: w[i]) {
            t.set(j, q, k);
            if (o == 1) t1.set(j, q, k);
            else t2.set(j, q, -k);
        }
        for (auto [v, j]: a[i]) {
            auto [u, l] = t.get(0, j);
            if (t.get(j, j).first < u + v) continue;
            v+=t2.get(j, j) + u;
            f[j] = g[t1.walk(l + 1, v)];
        }
    }
    FOR(i,1,q){
        if (p[i]) cout << f[i] << '\n';
    }
    cerr << "\nProcess returned 0 (0x0)   execution time :  " << 0.001*clock() << " s";
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 5 ms 13148 KB Output is correct
2 Correct 6 ms 13148 KB Output is correct
3 Correct 6 ms 13148 KB Output is correct
4 Correct 6 ms 13324 KB Output is correct
5 Correct 5 ms 13252 KB Output is correct
6 Correct 5 ms 13148 KB Output is correct
7 Correct 6 ms 13148 KB Output is correct
8 Correct 6 ms 13148 KB Output is correct
9 Correct 6 ms 13308 KB Output is correct
10 Correct 6 ms 13148 KB Output is correct
11 Correct 6 ms 13148 KB Output is correct
12 Correct 6 ms 13148 KB Output is correct
13 Correct 5 ms 13144 KB Output is correct
14 Correct 5 ms 13148 KB Output is correct
15 Correct 5 ms 13144 KB Output is correct
16 Correct 6 ms 13148 KB Output is correct
17 Correct 6 ms 13148 KB Output is correct
18 Correct 6 ms 13248 KB Output is correct
19 Correct 6 ms 13148 KB Output is correct
20 Correct 6 ms 13248 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 13148 KB Output is correct
2 Correct 6 ms 13148 KB Output is correct
3 Correct 6 ms 13148 KB Output is correct
4 Correct 6 ms 13324 KB Output is correct
5 Correct 5 ms 13252 KB Output is correct
6 Correct 5 ms 13148 KB Output is correct
7 Correct 6 ms 13148 KB Output is correct
8 Correct 6 ms 13148 KB Output is correct
9 Correct 6 ms 13308 KB Output is correct
10 Correct 6 ms 13148 KB Output is correct
11 Correct 6 ms 13148 KB Output is correct
12 Correct 6 ms 13148 KB Output is correct
13 Correct 5 ms 13144 KB Output is correct
14 Correct 5 ms 13148 KB Output is correct
15 Correct 5 ms 13144 KB Output is correct
16 Correct 6 ms 13148 KB Output is correct
17 Correct 6 ms 13148 KB Output is correct
18 Correct 6 ms 13248 KB Output is correct
19 Correct 6 ms 13148 KB Output is correct
20 Correct 6 ms 13248 KB Output is correct
21 Correct 7 ms 13148 KB Output is correct
22 Correct 7 ms 13316 KB Output is correct
23 Correct 6 ms 13144 KB Output is correct
24 Correct 6 ms 13148 KB Output is correct
25 Correct 5 ms 13148 KB Output is correct
26 Correct 5 ms 13148 KB Output is correct
27 Correct 7 ms 13304 KB Output is correct
28 Correct 7 ms 13144 KB Output is correct
29 Correct 6 ms 13148 KB Output is correct
30 Correct 6 ms 13148 KB Output is correct
31 Correct 7 ms 13304 KB Output is correct
32 Correct 6 ms 13144 KB Output is correct
33 Correct 5 ms 13304 KB Output is correct
34 Correct 8 ms 13304 KB Output is correct
35 Correct 5 ms 13148 KB Output is correct
36 Correct 6 ms 13148 KB Output is correct
37 Correct 5 ms 13148 KB Output is correct
38 Correct 6 ms 13324 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 75 ms 31064 KB Output is correct
2 Correct 73 ms 31124 KB Output is correct
3 Correct 75 ms 31312 KB Output is correct
4 Correct 76 ms 30804 KB Output is correct
5 Correct 77 ms 31060 KB Output is correct
6 Correct 80 ms 31104 KB Output is correct
7 Correct 40 ms 29380 KB Output is correct
8 Correct 43 ms 30000 KB Output is correct
9 Correct 79 ms 30804 KB Output is correct
10 Correct 78 ms 31112 KB Output is correct
11 Correct 74 ms 31088 KB Output is correct
12 Correct 84 ms 31072 KB Output is correct
13 Correct 68 ms 28948 KB Output is correct
14 Correct 76 ms 30808 KB Output is correct
15 Correct 74 ms 30816 KB Output is correct
16 Correct 80 ms 30960 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 1097 ms 78468 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 13148 KB Output is correct
2 Correct 6 ms 13148 KB Output is correct
3 Correct 6 ms 13148 KB Output is correct
4 Correct 6 ms 13324 KB Output is correct
5 Correct 5 ms 13252 KB Output is correct
6 Correct 5 ms 13148 KB Output is correct
7 Correct 6 ms 13148 KB Output is correct
8 Correct 6 ms 13148 KB Output is correct
9 Correct 6 ms 13308 KB Output is correct
10 Correct 6 ms 13148 KB Output is correct
11 Correct 6 ms 13148 KB Output is correct
12 Correct 6 ms 13148 KB Output is correct
13 Correct 5 ms 13144 KB Output is correct
14 Correct 5 ms 13148 KB Output is correct
15 Correct 5 ms 13144 KB Output is correct
16 Correct 6 ms 13148 KB Output is correct
17 Correct 6 ms 13148 KB Output is correct
18 Correct 6 ms 13248 KB Output is correct
19 Correct 6 ms 13148 KB Output is correct
20 Correct 6 ms 13248 KB Output is correct
21 Correct 75 ms 31064 KB Output is correct
22 Correct 73 ms 31124 KB Output is correct
23 Correct 75 ms 31312 KB Output is correct
24 Correct 76 ms 30804 KB Output is correct
25 Correct 77 ms 31060 KB Output is correct
26 Correct 80 ms 31104 KB Output is correct
27 Correct 40 ms 29380 KB Output is correct
28 Correct 43 ms 30000 KB Output is correct
29 Correct 79 ms 30804 KB Output is correct
30 Correct 78 ms 31112 KB Output is correct
31 Correct 74 ms 31088 KB Output is correct
32 Correct 84 ms 31072 KB Output is correct
33 Correct 68 ms 28948 KB Output is correct
34 Correct 76 ms 30808 KB Output is correct
35 Correct 74 ms 30816 KB Output is correct
36 Correct 80 ms 30960 KB Output is correct
37 Correct 729 ms 29064 KB Output is correct
38 Correct 523 ms 27252 KB Output is correct
39 Correct 264 ms 27320 KB Output is correct
40 Correct 359 ms 29316 KB Output is correct
41 Correct 622 ms 30804 KB Output is correct
42 Correct 897 ms 30956 KB Output is correct
43 Correct 505 ms 30924 KB Output is correct
44 Correct 645 ms 30876 KB Output is correct
45 Correct 885 ms 30792 KB Output is correct
46 Correct 481 ms 30816 KB Output is correct
47 Correct 751 ms 30556 KB Output is correct
48 Correct 533 ms 30716 KB Output is correct
49 Correct 72 ms 25588 KB Output is correct
50 Correct 88 ms 28212 KB Output is correct
51 Correct 105 ms 30948 KB Output is correct
52 Correct 108 ms 30804 KB Output is correct
53 Correct 65 ms 27080 KB Output is correct
54 Correct 79 ms 31060 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 1027 ms 29472 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 13148 KB Output is correct
2 Correct 6 ms 13148 KB Output is correct
3 Correct 6 ms 13148 KB Output is correct
4 Correct 6 ms 13324 KB Output is correct
5 Correct 5 ms 13252 KB Output is correct
6 Correct 5 ms 13148 KB Output is correct
7 Correct 6 ms 13148 KB Output is correct
8 Correct 6 ms 13148 KB Output is correct
9 Correct 6 ms 13308 KB Output is correct
10 Correct 6 ms 13148 KB Output is correct
11 Correct 6 ms 13148 KB Output is correct
12 Correct 6 ms 13148 KB Output is correct
13 Correct 5 ms 13144 KB Output is correct
14 Correct 5 ms 13148 KB Output is correct
15 Correct 5 ms 13144 KB Output is correct
16 Correct 6 ms 13148 KB Output is correct
17 Correct 6 ms 13148 KB Output is correct
18 Correct 6 ms 13248 KB Output is correct
19 Correct 6 ms 13148 KB Output is correct
20 Correct 6 ms 13248 KB Output is correct
21 Correct 7 ms 13148 KB Output is correct
22 Correct 7 ms 13316 KB Output is correct
23 Correct 6 ms 13144 KB Output is correct
24 Correct 6 ms 13148 KB Output is correct
25 Correct 5 ms 13148 KB Output is correct
26 Correct 5 ms 13148 KB Output is correct
27 Correct 7 ms 13304 KB Output is correct
28 Correct 7 ms 13144 KB Output is correct
29 Correct 6 ms 13148 KB Output is correct
30 Correct 6 ms 13148 KB Output is correct
31 Correct 7 ms 13304 KB Output is correct
32 Correct 6 ms 13144 KB Output is correct
33 Correct 5 ms 13304 KB Output is correct
34 Correct 8 ms 13304 KB Output is correct
35 Correct 5 ms 13148 KB Output is correct
36 Correct 6 ms 13148 KB Output is correct
37 Correct 5 ms 13148 KB Output is correct
38 Correct 6 ms 13324 KB Output is correct
39 Correct 75 ms 31064 KB Output is correct
40 Correct 73 ms 31124 KB Output is correct
41 Correct 75 ms 31312 KB Output is correct
42 Correct 76 ms 30804 KB Output is correct
43 Correct 77 ms 31060 KB Output is correct
44 Correct 80 ms 31104 KB Output is correct
45 Correct 40 ms 29380 KB Output is correct
46 Correct 43 ms 30000 KB Output is correct
47 Correct 79 ms 30804 KB Output is correct
48 Correct 78 ms 31112 KB Output is correct
49 Correct 74 ms 31088 KB Output is correct
50 Correct 84 ms 31072 KB Output is correct
51 Correct 68 ms 28948 KB Output is correct
52 Correct 76 ms 30808 KB Output is correct
53 Correct 74 ms 30816 KB Output is correct
54 Correct 80 ms 30960 KB Output is correct
55 Correct 729 ms 29064 KB Output is correct
56 Correct 523 ms 27252 KB Output is correct
57 Correct 264 ms 27320 KB Output is correct
58 Correct 359 ms 29316 KB Output is correct
59 Correct 622 ms 30804 KB Output is correct
60 Correct 897 ms 30956 KB Output is correct
61 Correct 505 ms 30924 KB Output is correct
62 Correct 645 ms 30876 KB Output is correct
63 Correct 885 ms 30792 KB Output is correct
64 Correct 481 ms 30816 KB Output is correct
65 Correct 751 ms 30556 KB Output is correct
66 Correct 533 ms 30716 KB Output is correct
67 Correct 72 ms 25588 KB Output is correct
68 Correct 88 ms 28212 KB Output is correct
69 Correct 105 ms 30948 KB Output is correct
70 Correct 108 ms 30804 KB Output is correct
71 Correct 65 ms 27080 KB Output is correct
72 Correct 79 ms 31060 KB Output is correct
73 Execution timed out 1027 ms 29472 KB Time limit exceeded
74 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 13148 KB Output is correct
2 Correct 6 ms 13148 KB Output is correct
3 Correct 6 ms 13148 KB Output is correct
4 Correct 6 ms 13324 KB Output is correct
5 Correct 5 ms 13252 KB Output is correct
6 Correct 5 ms 13148 KB Output is correct
7 Correct 6 ms 13148 KB Output is correct
8 Correct 6 ms 13148 KB Output is correct
9 Correct 6 ms 13308 KB Output is correct
10 Correct 6 ms 13148 KB Output is correct
11 Correct 6 ms 13148 KB Output is correct
12 Correct 6 ms 13148 KB Output is correct
13 Correct 5 ms 13144 KB Output is correct
14 Correct 5 ms 13148 KB Output is correct
15 Correct 5 ms 13144 KB Output is correct
16 Correct 6 ms 13148 KB Output is correct
17 Correct 6 ms 13148 KB Output is correct
18 Correct 6 ms 13248 KB Output is correct
19 Correct 6 ms 13148 KB Output is correct
20 Correct 6 ms 13248 KB Output is correct
21 Correct 7 ms 13148 KB Output is correct
22 Correct 7 ms 13316 KB Output is correct
23 Correct 6 ms 13144 KB Output is correct
24 Correct 6 ms 13148 KB Output is correct
25 Correct 5 ms 13148 KB Output is correct
26 Correct 5 ms 13148 KB Output is correct
27 Correct 7 ms 13304 KB Output is correct
28 Correct 7 ms 13144 KB Output is correct
29 Correct 6 ms 13148 KB Output is correct
30 Correct 6 ms 13148 KB Output is correct
31 Correct 7 ms 13304 KB Output is correct
32 Correct 6 ms 13144 KB Output is correct
33 Correct 5 ms 13304 KB Output is correct
34 Correct 8 ms 13304 KB Output is correct
35 Correct 5 ms 13148 KB Output is correct
36 Correct 6 ms 13148 KB Output is correct
37 Correct 5 ms 13148 KB Output is correct
38 Correct 6 ms 13324 KB Output is correct
39 Correct 75 ms 31064 KB Output is correct
40 Correct 73 ms 31124 KB Output is correct
41 Correct 75 ms 31312 KB Output is correct
42 Correct 76 ms 30804 KB Output is correct
43 Correct 77 ms 31060 KB Output is correct
44 Correct 80 ms 31104 KB Output is correct
45 Correct 40 ms 29380 KB Output is correct
46 Correct 43 ms 30000 KB Output is correct
47 Correct 79 ms 30804 KB Output is correct
48 Correct 78 ms 31112 KB Output is correct
49 Correct 74 ms 31088 KB Output is correct
50 Correct 84 ms 31072 KB Output is correct
51 Correct 68 ms 28948 KB Output is correct
52 Correct 76 ms 30808 KB Output is correct
53 Correct 74 ms 30816 KB Output is correct
54 Correct 80 ms 30960 KB Output is correct
55 Execution timed out 1097 ms 78468 KB Time limit exceeded
56 Halted 0 ms 0 KB -