Submission #1079658

# Submission time Handle Problem Language Result Execution time Memory
1079658 2024-08-28T20:12:52 Z danikoynov Bulldozer (JOI17_bulldozer) C++14
75 / 100
934 ms 51996 KB
#include<bits/stdc++.h>
#define endl '\n'

using namespace std;
typedef long long ll;

struct Point
{
    ll x, y;
    
    Point(ll _x = 0, ll _y = 0)
    {
        x = _x;
        y = _y;
    }
    
    void input()
    {
        cin >> x >> y;
    }
};
    
const int MAXN = 2010;
int n;
pair < Point, ll > spot[MAXN];
void input()
{
    cin >> n;
    for (int i = 1; i <= n; i ++)
    {
        spot[i].first.input();
        cin >> spot[i].second;
    }
}

struct Fraction
{
    ll num, dev;

    Fraction(ll _num = 0, ll _dev = 0)
    {
        num = _num;
        dev = _dev;
    }

    void rationalize()
    {
        ll nod = __gcd(num, dev);
        if (nod < 0)
            nod = - nod;
        num /= nod;
        dev /= nod;
    }

    bool operator < (const Fraction f) const
    {
        /// num / dev < f.num / f.dev
        return (num * f.dev) < (f.num * dev);
    }
};


bool cmp(pair < Point, ll > p1, pair < Point, ll > p2)
{
    if (p1.first.x != p2.first.x)
        return p1.first.x < p2.first.x;
    return p1.first.y > p2.first.y;
}


const ll INF = 1e18;

struct Node
{
    ll val[2];

    Node()
    {
        val[0] = INF;
        val[1] = -INF;
    }
};

Node unite(Node lf, Node rf)
{
    Node mf;
    mf.val[0] = min(lf.val[0], rf.val[0]);
    mf.val[1] = max(lf.val[1], rf.val[1]);
    return mf;
}

Node tree[4 * MAXN];
ll pref[MAXN];

void build(int root, int left, int right)
{
    if (left == right)
    {
        tree[root].val[0] = tree[root].val[1] = pref[left];
        return;
    }

    int mid = (left + right) / 2;
    build(root * 2, left, mid);
    build(root * 2 + 1, mid + 1, right);

    tree[root] = unite(tree[root * 2], tree[root * 2 + 1]);
}

void update(int root, int left, int right, int pivot)
{
    if (left == right)
    {
        tree[root].val[0] = tree[root].val[1] = pref[left];
        return;
    }

    int mid = (left + right) / 2;
    if (pivot <= mid)
        update(root * 2, left, mid, pivot);
    else
        update(root * 2 + 1, mid + 1, right, pivot);
    
    tree[root] = unite(tree[root * 2], tree[root * 2 + 1]);
}

Node query(int root, int left, int right, int qleft, int qright)
{
    if (left > qright || right < qleft)
        return Node();

    if (left >= qleft && right <= qright)
        return tree[root];
    
    int mid = (left + right) / 2;
    return unite(query(root * 2, left, mid, qleft, qright),
            query(root * 2 + 1, mid + 1, right, qleft, qright));
}


int position[MAXN];
void simulate()
{
    if (n == 1)
    {
        ll result = 0;
        result = max(result, spot[1].second);
        cout << result << endl;
        return;
    }

    sort(spot + 1, spot + n + 1, cmp);
    for (int i = 1; i <= n; i ++)
        position[i] = i;

    vector < pair < Fraction, pair < int, int > > > events;
    for (int i = 1; i <= n; i ++)
        for (int j = i + 1; j <= n; j ++)
        {
            Fraction slope(spot[j].first.y - spot[i].first.y, 
                    spot[j].first.x - spot[i].first.x);
            slope.rationalize();
            events.push_back({slope, {i, j}});
        }

    sort(events.begin(), events.end());

    ll sum = 0, result = 0;
    for (int i = 1; i <= n; i ++)
    {
        sum += spot[i].second;
        if (sum < 0)
            sum = 0;
        result = max(result, sum);
        pref[i] = pref[i - 1] + spot[i].second;
    }
    //cout << "begin " << tree[1].best_sum << " " << cur << endl;
    
    build(1, 0, n);
    for (pair < Fraction, pair < ll, ll > > event : events)
    {
        //Fraction slope = event.first;
        pair < ll, ll > pivots = event.second;
        //cout << pivots.first << " : " << pivots.second << endl;
        assert(abs(position[pivots.first] - position[pivots.second]) == 1);
        int pivot = min(position[pivots.first], position[pivots.second]);
        pref[pivot] -= spot[pivot].second;
        pref[pivot] += spot[pivot + 1].second;
        swap(spot[position[pivots.first]], spot[position[pivots.second]]);
        swap(position[pivots.first], position[pivots.second]);
        update(1, 0, n, pivot);

        Node lf = query(1, 0, n, 0, pivot), rf = query(1, 0, n, pivot, n);
        result = max(result, pref[pivot] - lf.val[0]);
        result = max(result, rf.val[1] - pref[pivot]);
        /**
        sum = 0, cur = 0;;
        for (int i = 1; i <= n; i ++)
        {
            sum += spot[i].second;
            if (sum < 0)
                sum = 0;
            cur = max(cur, sum);
            //result = max(result, sum);
        }

        cout << "step " << tree[1].best_sum << " " << cur << endl;*/
    }

    cout << result << endl;
}

void solve()
{
    input();
    simulate();
}
int main()
{   
    solve();
    return 0;
}
# Verdict Execution time Memory Grader output
1 Incorrect 1 ms 856 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 860 KB Output is correct
2 Correct 2 ms 860 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 2 ms 860 KB Output is correct
5 Correct 2 ms 860 KB Output is correct
6 Correct 2 ms 860 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 872 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
11 Correct 0 ms 604 KB Output is correct
12 Correct 0 ms 604 KB Output is correct
13 Correct 0 ms 600 KB Output is correct
14 Correct 0 ms 604 KB Output is correct
15 Correct 0 ms 604 KB Output is correct
16 Correct 0 ms 604 KB Output is correct
17 Correct 0 ms 604 KB Output is correct
18 Correct 0 ms 604 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 0 ms 604 KB Output is correct
21 Correct 2 ms 860 KB Output is correct
22 Correct 2 ms 860 KB Output is correct
23 Correct 2 ms 860 KB Output is correct
24 Correct 2 ms 860 KB Output is correct
25 Correct 2 ms 860 KB Output is correct
26 Correct 2 ms 860 KB Output is correct
27 Correct 2 ms 860 KB Output is correct
28 Correct 2 ms 860 KB Output is correct
29 Correct 2 ms 860 KB Output is correct
30 Correct 2 ms 872 KB Output is correct
31 Correct 2 ms 860 KB Output is correct
32 Correct 2 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 860 KB Output is correct
2 Correct 2 ms 860 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 2 ms 860 KB Output is correct
5 Correct 2 ms 860 KB Output is correct
6 Correct 2 ms 860 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 872 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
11 Correct 0 ms 604 KB Output is correct
12 Correct 0 ms 604 KB Output is correct
13 Correct 0 ms 600 KB Output is correct
14 Correct 0 ms 604 KB Output is correct
15 Correct 0 ms 604 KB Output is correct
16 Correct 0 ms 604 KB Output is correct
17 Correct 0 ms 604 KB Output is correct
18 Correct 0 ms 604 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 0 ms 604 KB Output is correct
21 Correct 2 ms 860 KB Output is correct
22 Correct 2 ms 860 KB Output is correct
23 Correct 2 ms 860 KB Output is correct
24 Correct 2 ms 860 KB Output is correct
25 Correct 2 ms 860 KB Output is correct
26 Correct 2 ms 860 KB Output is correct
27 Correct 2 ms 860 KB Output is correct
28 Correct 2 ms 860 KB Output is correct
29 Correct 2 ms 860 KB Output is correct
30 Correct 2 ms 872 KB Output is correct
31 Correct 2 ms 860 KB Output is correct
32 Correct 2 ms 860 KB Output is correct
33 Correct 891 ms 50180 KB Output is correct
34 Correct 884 ms 50932 KB Output is correct
35 Correct 893 ms 50600 KB Output is correct
36 Correct 885 ms 50860 KB Output is correct
37 Correct 905 ms 50732 KB Output is correct
38 Correct 901 ms 51192 KB Output is correct
39 Correct 896 ms 51364 KB Output is correct
40 Correct 889 ms 51220 KB Output is correct
41 Correct 887 ms 50340 KB Output is correct
42 Correct 920 ms 50344 KB Output is correct
43 Correct 871 ms 51880 KB Output is correct
44 Correct 854 ms 51616 KB Output is correct
45 Correct 861 ms 50664 KB Output is correct
46 Correct 870 ms 50084 KB Output is correct
47 Correct 862 ms 50084 KB Output is correct
48 Correct 871 ms 50852 KB Output is correct
49 Correct 911 ms 50336 KB Output is correct
50 Correct 871 ms 51996 KB Output is correct
51 Correct 882 ms 51104 KB Output is correct
52 Correct 852 ms 50600 KB Output is correct
53 Correct 850 ms 50708 KB Output is correct
54 Correct 870 ms 49964 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 860 KB Output is correct
2 Correct 2 ms 860 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 2 ms 860 KB Output is correct
5 Correct 2 ms 860 KB Output is correct
6 Correct 2 ms 860 KB Output is correct
7 Correct 2 ms 860 KB Output is correct
8 Correct 2 ms 872 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
11 Correct 0 ms 604 KB Output is correct
12 Correct 0 ms 604 KB Output is correct
13 Correct 0 ms 600 KB Output is correct
14 Correct 0 ms 604 KB Output is correct
15 Correct 0 ms 604 KB Output is correct
16 Correct 0 ms 604 KB Output is correct
17 Correct 0 ms 604 KB Output is correct
18 Correct 0 ms 604 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 0 ms 604 KB Output is correct
21 Correct 2 ms 860 KB Output is correct
22 Correct 2 ms 860 KB Output is correct
23 Correct 2 ms 860 KB Output is correct
24 Correct 2 ms 860 KB Output is correct
25 Correct 2 ms 860 KB Output is correct
26 Correct 2 ms 860 KB Output is correct
27 Correct 2 ms 860 KB Output is correct
28 Correct 2 ms 860 KB Output is correct
29 Correct 2 ms 860 KB Output is correct
30 Correct 2 ms 872 KB Output is correct
31 Correct 2 ms 860 KB Output is correct
32 Correct 2 ms 860 KB Output is correct
33 Correct 891 ms 50180 KB Output is correct
34 Correct 884 ms 50932 KB Output is correct
35 Correct 893 ms 50600 KB Output is correct
36 Correct 885 ms 50860 KB Output is correct
37 Correct 905 ms 50732 KB Output is correct
38 Correct 901 ms 51192 KB Output is correct
39 Correct 896 ms 51364 KB Output is correct
40 Correct 889 ms 51220 KB Output is correct
41 Correct 887 ms 50340 KB Output is correct
42 Correct 920 ms 50344 KB Output is correct
43 Correct 871 ms 51880 KB Output is correct
44 Correct 854 ms 51616 KB Output is correct
45 Correct 861 ms 50664 KB Output is correct
46 Correct 870 ms 50084 KB Output is correct
47 Correct 862 ms 50084 KB Output is correct
48 Correct 871 ms 50852 KB Output is correct
49 Correct 911 ms 50336 KB Output is correct
50 Correct 871 ms 51996 KB Output is correct
51 Correct 882 ms 51104 KB Output is correct
52 Correct 852 ms 50600 KB Output is correct
53 Correct 850 ms 50708 KB Output is correct
54 Correct 870 ms 49964 KB Output is correct
55 Correct 902 ms 50852 KB Output is correct
56 Correct 902 ms 51360 KB Output is correct
57 Correct 925 ms 51920 KB Output is correct
58 Correct 895 ms 50596 KB Output is correct
59 Correct 894 ms 51136 KB Output is correct
60 Correct 881 ms 50596 KB Output is correct
61 Correct 903 ms 50600 KB Output is correct
62 Correct 934 ms 50092 KB Output is correct
63 Correct 876 ms 50852 KB Output is correct
64 Correct 901 ms 51108 KB Output is correct
65 Correct 879 ms 50852 KB Output is correct
66 Correct 885 ms 50344 KB Output is correct
67 Correct 882 ms 51100 KB Output is correct
68 Correct 897 ms 50828 KB Output is correct
69 Correct 891 ms 50084 KB Output is correct
70 Correct 890 ms 50084 KB Output is correct
71 Correct 894 ms 51620 KB Output is correct
72 Correct 900 ms 51624 KB Output is correct
73 Correct 890 ms 51104 KB Output is correct
74 Correct 885 ms 50088 KB Output is correct
# Verdict Execution time Memory Grader output
1 Incorrect 1 ms 856 KB Output isn't correct
2 Halted 0 ms 0 KB -