Submission #1070329

# Submission time Handle Problem Language Result Execution time Memory
1070329 2024-08-22T13:15:03 Z GrindMachine Tricks of the Trade (CEOI23_trade) C++17
100 / 100
2973 ms 574576 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(...) 42
#endif

/*

refs:
edi

*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

template<typename T>
struct fenwick {
    int n;
    vector<T> tr;
    int LOG = 0;

    fenwick() {

    }

    fenwick(int n_) {
        n = n_;
        tr = vector<T>(n + 1);
        while((1<<LOG) <= n) LOG++;
    }

    void reset(){
        fill(all(tr),0);
    }

    int lsb(int x) {
        return x & -x;
    }

    void pupd(int i, T v) {
        for(; i <= n; i += lsb(i)){
            tr[i] += v;
        }
    }

    T sum(int i) {
        T res = 0;
        for(; i; i ^= lsb(i)){
            res += tr[i];
        }
        return res;
    }

    T query(int l, int r) {
        if (l > r) return 0;
        T res = sum(r) - sum(l - 1);
        return res;
    }

    int lower_bound(T s){
        // first pos with sum >= s
        if(sum(n) < s) return n+1;
        int i = 0;
        rev(bit,LOG-1,0){
            int j = i+(1<<bit);
            if(j > n) conts;
            if(tr[j] < s){
                s -= tr[j];
                i = j;
            }
        }

        return i+1;
    }

    int upper_bound(T s){
        return lower_bound(s+1);
    }
};

void solve(int test_case)
{
    ll n,k; cin >> n >> k;
    vector<ll> a(n+5), b(n+5);
    rep1(i,n) cin >> a[i];
    rep1(i,n) cin >> b[i]; 
    vector<ll> p(n+5);
    rep1(i,n) p[i] = p[i-1]+a[i];

    multiset<ll> ms1,ms2;
    ll curr_sum = 0;
    ll lx = 1, rx = 0;

    auto transfer = [&](){
        while(!ms2.empty() and sz(ms1) < k){
            curr_sum += *ms2.rbegin();
            ms1.insert(*ms2.rbegin());
            ms2.erase(--ms2.end());
        }

        while(sz(ms1) > k){
            ll x = *ms1.begin();
            curr_sum -= x;
            ms1.erase(ms1.begin());
            ms2.insert(x);
        }

        if(ms2.empty()) return;

        while(true){
            ll mn1 = *ms1.begin(), mx2 = *ms2.rbegin();
            if(mn1 >= mx2) break;
            ms1.erase(ms1.find(mn1));
            ms2.erase(ms2.find(mx2));
            ms1.insert(mx2);
            ms2.insert(mn1);
            curr_sum += mx2-mn1;
        }
    };

    auto ins = [&](ll i){
        ms1.insert(b[i]);
        curr_sum += b[i];
        transfer();
    };

    auto del = [&](ll i){
        if(ms1.find(b[i]) != ms1.end()){
            ms1.erase(ms1.find(b[i]));
            curr_sum -= b[i];
        }
        else{
            ms2.erase(ms2.find(b[i]));
        }

        transfer();
    };

    auto f = [&](ll l, ll r){
        if(r-l+1 < k) return -inf2;
        
        // expand
        while(rx < r){
            rx++;
            ins(rx);
        }
        while(lx > l){
            lx--;
            ins(lx);
        }

        // contract
        while(rx > r){
            del(rx);
            rx--;
        }
        while(lx < l){
            del(lx);
            lx++;
        }

        ll sum = -(p[r]-p[l-1]);
        sum += curr_sum;
        return sum;
    };

    ll ans = -inf2;
    vector<pll> segs;

    auto upd = [&](ll l, ll r, ll x){
        if(x < ans) return;
        if(x > ans){
            segs.clear();
        }
        ans = x;
        segs.pb({l,r});
    };

    auto go = [&](ll l, ll r, ll optl, ll optr, auto &&go) -> void{
        if(l > r) return;
        ll mid = (l+r) >> 1;
        ll best = -inf2, optm = -1;

        for(int i = optl; i <= optr; ++i){
            ll cost = f(mid,i);
            if(cost >= best){
                best = cost;
                optm = i;
            }
            upd(mid,i,cost);
        }

        go(l,mid-1,optl,optm,go);
        go(mid+1,r,optm,optr,go);
    };

    go(1,n-k+1,1,n,go);
    cout << ans << endl;

    vector<ll> c;
    rep1(i,n) c.pb(b[i]);
    c.pb(-1);
    sort(all(c));
    c.resize(unique(all(c))-c.begin());

    vector<ll> cb(n+5);
    rep1(i,n) cb[i] = lower_bound(all(c),b[i])-c.begin();

    vector<ll> pos[n+5];
    rep1(i,n) pos[cb[i]].pb(i);

    vector<array<ll,3>> here[n+5];
    ll siz = sz(segs);

    rep(i,siz){
        auto [l,r] = segs[i];
        here[(1+n)>>1].pb({1,n,i});
    }

    vector<ll> kth(siz,-1);
    fenwick<ll> fenw(n+5);

    while(true){
        vector<array<ll,3>> nxt;
        fenw.reset();
        rev(mid,n,1){
            trav(i,pos[mid]){
                fenw.pupd(i,1);
            }

            for(auto [lo,hi,i] : here[mid]){
                auto [l,r] = segs[i];
                ll cnt = fenw.query(l,r);
                if(cnt >= k){
                    kth[i] = mid;
                    nxt.pb({mid+1,hi,i});
                }
                else{
                    nxt.pb({lo,mid-1,i});
                }
            }
        }

        rep1(i,n) here[i].clear();
        
        bool ok = false;
        for(auto [lo,hi,i] : nxt){
            if(lo > hi) conts;
            ok = true;
            here[(lo+hi)>>1].pb({lo,hi,i});
        }

        if(!ok) break;
    }

    vector<ll> enter[n+5], leave[n+5];
    rep(i,siz){
        auto [l,r] = segs[i];
        enter[l].pb(kth[i]);
        leave[r+1].pb(kth[i]);
    }

    multiset<ll> ms;
    rep1(i,n){
        trav(x,enter[i]){
            ms.insert(x);
        }
        
        trav(x,leave[i]){
            ms.erase(ms.find(x));
        }

        if(!ms.empty() and cb[i] >= *ms.begin()){
            cout << 1;
        }
        else{
            cout << 0;
        }
    }

    cout << endl;
}

int main()
{
    fastio;

    int t = 1;
    // cin >> t;

    rep1(i, t) {
        solve(i);
    }

    return 0;
}

Compilation message

trade.cpp: In function 'void solve(int)':
trade.cpp:261:14: warning: structured binding declaration set but not used [-Wunused-but-set-variable]
  261 |         auto [l,r] = segs[i];
      |              ^~~~~
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 344 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 344 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 1 ms 360 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 1 ms 348 KB Output is correct
18 Correct 1 ms 348 KB Output is correct
19 Correct 1 ms 604 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 1 ms 348 KB Output is correct
22 Correct 1 ms 348 KB Output is correct
23 Correct 4 ms 1628 KB Output is correct
24 Correct 18 ms 2396 KB Output is correct
25 Correct 28 ms 2180 KB Output is correct
26 Correct 26 ms 2388 KB Output is correct
27 Correct 32 ms 8180 KB Output is correct
28 Correct 15 ms 1436 KB Output is correct
29 Correct 18 ms 1628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 798 ms 101708 KB Output is correct
3 Correct 1109 ms 42696 KB Output is correct
4 Correct 1027 ms 45700 KB Output is correct
5 Correct 1248 ms 116688 KB Output is correct
6 Correct 1406 ms 127916 KB Output is correct
7 Correct 2241 ms 111884 KB Output is correct
8 Correct 1238 ms 42692 KB Output is correct
9 Correct 1074 ms 42696 KB Output is correct
10 Correct 1188 ms 91400 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 798 ms 101708 KB Output is correct
3 Correct 1109 ms 42696 KB Output is correct
4 Correct 1027 ms 45700 KB Output is correct
5 Correct 1248 ms 116688 KB Output is correct
6 Correct 1406 ms 127916 KB Output is correct
7 Correct 2241 ms 111884 KB Output is correct
8 Correct 1238 ms 42692 KB Output is correct
9 Correct 1074 ms 42696 KB Output is correct
10 Correct 1188 ms 91400 KB Output is correct
11 Correct 1 ms 344 KB Output is correct
12 Correct 798 ms 101584 KB Output is correct
13 Correct 1160 ms 42696 KB Output is correct
14 Correct 1067 ms 45768 KB Output is correct
15 Correct 1253 ms 116572 KB Output is correct
16 Correct 1400 ms 127964 KB Output is correct
17 Correct 2284 ms 111952 KB Output is correct
18 Correct 1176 ms 42696 KB Output is correct
19 Correct 1072 ms 42692 KB Output is correct
20 Correct 1161 ms 91348 KB Output is correct
21 Correct 0 ms 344 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 1 ms 348 KB Output is correct
24 Correct 0 ms 348 KB Output is correct
25 Correct 1 ms 348 KB Output is correct
26 Correct 1 ms 348 KB Output is correct
27 Correct 1 ms 604 KB Output is correct
28 Correct 1 ms 348 KB Output is correct
29 Correct 1 ms 348 KB Output is correct
30 Correct 0 ms 348 KB Output is correct
31 Correct 1557 ms 44492 KB Output is correct
32 Correct 1193 ms 101596 KB Output is correct
33 Correct 2052 ms 94516 KB Output is correct
34 Correct 2145 ms 91920 KB Output is correct
35 Correct 2055 ms 70536 KB Output is correct
36 Correct 2973 ms 50524 KB Output is correct
37 Correct 1542 ms 182604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 604 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 1 ms 360 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 1 ms 604 KB Output is correct
22 Correct 1 ms 348 KB Output is correct
23 Correct 1 ms 348 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
25 Correct 4 ms 1628 KB Output is correct
26 Correct 18 ms 2396 KB Output is correct
27 Correct 28 ms 2180 KB Output is correct
28 Correct 26 ms 2388 KB Output is correct
29 Correct 32 ms 8180 KB Output is correct
30 Correct 15 ms 1436 KB Output is correct
31 Correct 18 ms 1628 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
33 Correct 798 ms 101708 KB Output is correct
34 Correct 1109 ms 42696 KB Output is correct
35 Correct 1027 ms 45700 KB Output is correct
36 Correct 1248 ms 116688 KB Output is correct
37 Correct 1406 ms 127916 KB Output is correct
38 Correct 2241 ms 111884 KB Output is correct
39 Correct 1238 ms 42692 KB Output is correct
40 Correct 1074 ms 42696 KB Output is correct
41 Correct 1188 ms 91400 KB Output is correct
42 Correct 1 ms 344 KB Output is correct
43 Correct 798 ms 101584 KB Output is correct
44 Correct 1160 ms 42696 KB Output is correct
45 Correct 1067 ms 45768 KB Output is correct
46 Correct 1253 ms 116572 KB Output is correct
47 Correct 1400 ms 127964 KB Output is correct
48 Correct 2284 ms 111952 KB Output is correct
49 Correct 1176 ms 42696 KB Output is correct
50 Correct 1072 ms 42692 KB Output is correct
51 Correct 1161 ms 91348 KB Output is correct
52 Correct 0 ms 344 KB Output is correct
53 Correct 0 ms 348 KB Output is correct
54 Correct 1 ms 348 KB Output is correct
55 Correct 0 ms 348 KB Output is correct
56 Correct 1 ms 348 KB Output is correct
57 Correct 1 ms 348 KB Output is correct
58 Correct 1 ms 604 KB Output is correct
59 Correct 1 ms 348 KB Output is correct
60 Correct 1 ms 348 KB Output is correct
61 Correct 0 ms 348 KB Output is correct
62 Correct 1557 ms 44492 KB Output is correct
63 Correct 1193 ms 101596 KB Output is correct
64 Correct 2052 ms 94516 KB Output is correct
65 Correct 2145 ms 91920 KB Output is correct
66 Correct 2055 ms 70536 KB Output is correct
67 Correct 2973 ms 50524 KB Output is correct
68 Correct 1542 ms 182604 KB Output is correct
69 Correct 0 ms 348 KB Output is correct
70 Correct 826 ms 102248 KB Output is correct
71 Correct 1233 ms 42692 KB Output is correct
72 Correct 1060 ms 45700 KB Output is correct
73 Correct 1349 ms 116516 KB Output is correct
74 Correct 1405 ms 127956 KB Output is correct
75 Correct 2159 ms 112068 KB Output is correct
76 Correct 1285 ms 42956 KB Output is correct
77 Correct 1113 ms 42700 KB Output is correct
78 Correct 1273 ms 94172 KB Output is correct
79 Correct 1 ms 348 KB Output is correct
80 Correct 0 ms 348 KB Output is correct
81 Correct 1 ms 348 KB Output is correct
82 Correct 0 ms 348 KB Output is correct
83 Correct 1 ms 420 KB Output is correct
84 Correct 1 ms 348 KB Output is correct
85 Correct 1 ms 604 KB Output is correct
86 Correct 1 ms 348 KB Output is correct
87 Correct 1 ms 348 KB Output is correct
88 Correct 1 ms 348 KB Output is correct
89 Correct 1598 ms 44740 KB Output is correct
90 Correct 1185 ms 101592 KB Output is correct
91 Correct 1946 ms 94860 KB Output is correct
92 Correct 1994 ms 92080 KB Output is correct
93 Correct 1909 ms 70532 KB Output is correct
94 Correct 2601 ms 50492 KB Output is correct
95 Correct 1462 ms 183404 KB Output is correct
96 Correct 4 ms 1628 KB Output is correct
97 Correct 18 ms 2396 KB Output is correct
98 Correct 27 ms 2392 KB Output is correct
99 Correct 26 ms 2388 KB Output is correct
100 Correct 29 ms 8176 KB Output is correct
101 Correct 14 ms 1372 KB Output is correct
102 Correct 19 ms 1480 KB Output is correct
103 Correct 2330 ms 53000 KB Output is correct
104 Correct 2085 ms 60464 KB Output is correct
105 Correct 2116 ms 91236 KB Output is correct
106 Correct 2594 ms 93496 KB Output is correct
107 Correct 393 ms 56004 KB Output is correct
108 Correct 2354 ms 75460 KB Output is correct
109 Correct 2368 ms 574576 KB Output is correct
110 Correct 1690 ms 97824 KB Output is correct
111 Correct 643 ms 52936 KB Output is correct
112 Correct 1945 ms 250840 KB Output is correct