답안 #1067057

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
1067057 2024-08-20T10:25:02 Z j_vdd16 디지털 회로 (IOI22_circuit) C++17
50 / 100
3000 ms 24664 KB
#include "circuit.h"

#include <algorithm>
#include <bitset>
#include <cstdint>
#include <cstring>
#include <iostream>
#include <limits.h>
#include <math.h>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>

#define int long long
#define loop(X, N) for(int X = 0; X < (N); X++)
#define all(V) V.begin(), V.end()
#define rall(V) V.rbegin(), V.rend()

using namespace std;

typedef vector<int> vi;
typedef vector<vi> vvi;
typedef pair<int, int> ii;
typedef vector<ii> vii;
typedef vector<vector<ii>> vvii;
typedef vector<bool> vb;
typedef vector<vector<bool>> vvb;

constexpr int mod = 1'000'002'022;

struct SegTree {
    int n, N;

    vi prefix;
    int prefSum(int l, int r) {
        return (prefix[r] - prefix[l] + mod) % mod;
    }

    vi tree;
    vi lazy;
    SegTree() = default;
    SegTree(vi values, vector<signed> assignment) {
        n = values.size();
        N = 1;
        while (N < n) N *= 2;

        prefix = vi(n + 1);
        loop(i, n) {
            prefix[i + 1] = (prefix[i] + values[i]) % mod;
        }

        tree = vi(2 * N);
        lazy = vi(2 * N);
        loop(i, n) {
            tree[N + i] = assignment[i] ? values[i] : 0;
        }
        for (int i = N - 1; i >= 1; i--) {
            tree[i] = (tree[2 * i] + tree[2 * i + 1]) % mod;
        }
    }

    int get(int l, int r, int i = 1, int tl = 0, int tr = -1) {
        if (tr == -1) {
            tr = N;
        }
        
        if (lazy[i]) {
            tree[i] = (prefSum(tl, tr) - tree[i] + mod) % mod;
            if (tr - tl > 1) {
                lazy[2 * i] ^= true;
                lazy[2 * i + 1] ^= true;
            }
            lazy[i] = false;
        }

        if (tr <= l || tl >= r) {
            return tree[i];
        }

        if (tl >= l && tr <= r) {
            tree[i] = (prefSum(tl, tr) - tree[i] + mod) % mod;
            if (tr - tl > 1) {
                lazy[2 * i] ^= true;
                lazy[2 * i + 1] ^= true;
            }

            return tree[i];
        }

        int tm = (tl + tr) / 2;
        tree[i] = (get(l, r, 2 * i, tl, tm) + get(l, r, 2 * i + 1, tm, tr)) % mod;
        return tree[i];
    }
};

int n, m;
vvi children;
vector<signed> assignment;
vi c;

int dfs(int node) { //a
    if (node >= n) {
        return { assignment[node - n] };
    }

    vii counts; //c, a
    for (int child : children[node]) {
        int res = dfs(child);
        counts.push_back({c[child], res});
    }

    /*
    2 children:
    a = 
        1 * (a[0] * b[1] + b[0] * a[1]) +
        2 * (a[0] * a[1])
      =
        1 * (a[0] * (c[1] - a[1]) + (c[0] - a[0]) * a[1]) +
        2 * (a[0] * a[1])
      = a[0] * c[1] + c[0] * a[1]
    */
    /*
    a - b
    |
    c - d
    |
    e

    c = e * 1 + d * 1
    a = c * 1 + b * 2 = (e * 1 + d * 1) + b * 2
    */
    return (counts[0].first * counts[1].second + counts[0].second * counts[1].first) % mod;
}

vi factors;
void cDfs(int node) {
    if (node >= n) {
        c[node] = 1;
        return;
    }

    vii out;
    c[node] = children[node].size();
    for (int child : children[node]) {
        cDfs(child);

        c[node] = (c[node] * c[child]) % mod;
    }
}
void factorDfs(int node, int factor) {
    if (node >= n) {
        factors[node - n] = factor;
        return;
    }

    factorDfs(children[node][0], (factor * c[children[node][1]]) % mod);
    factorDfs(children[node][1], (factor * c[children[node][0]]) % mod);
}

SegTree segTree;
void init(signed N, signed M, std::vector<signed> P, std::vector<signed> A) {
    n = N;
    m = M;
    children = vvi(n);
    assignment = A;
    c = vi(n + m);
    factors = vi(m);

    for (int i = 1; i < n + m; i++) {
        children[P[i]].push_back(i);
    }

    cDfs(0);
    factorDfs(0, 1);

    segTree = SegTree(factors, assignment);
}

signed count_ways(signed L, signed R) {
    int res = segTree.get(L - n, R - n + 1);
    // for (int i = L; i <= R; i++) {
    //     assignment[i - n] ^= 1;
    // }

    // int res = 0;
    // loop(i, m) {
    //     res = (res + assignment[i] * factors[i]) % mod;
    // }

    return res;
    /*
    3 children:
    a = 
        1 * (a[0] * b[1] * b[2] + b[0] * a[1] * b[2] + b[0] * b[1] * a[2]) + 
        2 * (a[0] * a[1] * b[2] + a[0] * b[1] * a[2] + b[0] * a[1] * a[2]) +
        3 * (a[0] * a[1] * a[2])
      =
        1 * (a[0] * (c[1] - a[1]) * (c[2] - a[2]))
        2 * (a[0] * a[1] * (c[2] - a[2]))
        3 * (a[0] * a[1] * a[2])
      =
        (1 + 2 - 3) * (a[0] * a[1] * a[2])
        a[0] * c[1] * c[2]
        2 * (a[0] * a[1] * c[2]) - 2 * (a[0] * a[1] * c[2])
    
    C = c[0] * c[1] * c[2] * 3
    b = C - a
      = 

    2 children:
    a = 
        1 * (a[0] * b[1] + b[0] * a[1]) +
        2 * (a[0] * a[1])
      =
        1 * (a[0] * (c[1] - a[1]) + (c[0] - a[0]) * a[1]) +
        2 * (a[0] * a[1])
      = a[0] * c[1] + c[0] * a[1]
    
    C = c[0] * c[1] * 2
    b = C - a
      = 
    */

    //return 0;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Execution timed out 3080 ms 344 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 0 ms 344 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 0 ms 344 KB Output is correct
7 Correct 1 ms 444 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 1 ms 344 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 1 ms 344 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Execution timed out 3080 ms 344 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 474 ms 5464 KB Output is correct
2 Correct 697 ms 10576 KB Output is correct
3 Correct 707 ms 10584 KB Output is correct
4 Correct 683 ms 10584 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 474 ms 5464 KB Output is correct
2 Correct 697 ms 10576 KB Output is correct
3 Correct 707 ms 10584 KB Output is correct
4 Correct 683 ms 10584 KB Output is correct
5 Correct 532 ms 5464 KB Output is correct
6 Correct 741 ms 10584 KB Output is correct
7 Correct 743 ms 10688 KB Output is correct
8 Correct 679 ms 10688 KB Output is correct
9 Correct 345 ms 732 KB Output is correct
10 Correct 652 ms 1052 KB Output is correct
11 Correct 702 ms 1044 KB Output is correct
12 Correct 646 ms 1052 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 0 ms 344 KB Output is correct
4 Correct 1 ms 344 KB Output is correct
5 Correct 1 ms 344 KB Output is correct
6 Correct 0 ms 344 KB Output is correct
7 Correct 1 ms 444 KB Output is correct
8 Correct 1 ms 344 KB Output is correct
9 Correct 1 ms 344 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 1 ms 344 KB Output is correct
13 Correct 474 ms 5464 KB Output is correct
14 Correct 697 ms 10576 KB Output is correct
15 Correct 707 ms 10584 KB Output is correct
16 Correct 683 ms 10584 KB Output is correct
17 Correct 532 ms 5464 KB Output is correct
18 Correct 741 ms 10584 KB Output is correct
19 Correct 743 ms 10688 KB Output is correct
20 Correct 679 ms 10688 KB Output is correct
21 Correct 345 ms 732 KB Output is correct
22 Correct 652 ms 1052 KB Output is correct
23 Correct 702 ms 1044 KB Output is correct
24 Correct 646 ms 1052 KB Output is correct
25 Correct 673 ms 16692 KB Output is correct
26 Correct 724 ms 16976 KB Output is correct
27 Correct 760 ms 16976 KB Output is correct
28 Correct 570 ms 16976 KB Output is correct
29 Correct 752 ms 24664 KB Output is correct
30 Correct 756 ms 24648 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Execution timed out 3080 ms 344 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 344 KB Output is correct
2 Execution timed out 3080 ms 344 KB Time limit exceeded
3 Halted 0 ms 0 KB -