Submission #104916

# Submission time Handle Problem Language Result Execution time Memory
104916 2019-04-09T16:14:44 Z eriksuenderhauf Bubble Sort 2 (JOI18_bubblesort2) C++11
100 / 100
5656 ms 92884 KB
#pragma GCC optimize("O3")
#include "bubblesort2.h"
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define pii pair<int, int>
#define piii pair<pii, int>
#define vii vector<pii>
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
using namespace __gnu_pbds;
typedef tree<pii, null_type, less<pii>, rb_tree_tag, tree_order_statistics_node_update> oset;
const int MAXN = 1e6 + 5;
const int INF = 1e9 + 7;

int cid[MAXN], B[MAXN];
int n = 0, q = 0;
oset ind;
pii arr[MAXN], C[MAXN];
int tre[MAXN * 4], lazy[MAXN * 4], updVal[MAXN];

void build(int l, int r, int k) {
    lazy[k] = 0;
    if (l == r) {
        tre[k] = -INF;
        return;
    }
    int m = (l + r) / 2;
    build(l, m, k * 2);
    build(m + 1, r, k * 2 + 1);
    tre[k] = max(tre[k*2], tre[k*2+1]);
}

void upd(int l, int r, int k, int a, int b, int v, int fl) {
    if (lazy[k] != 0) {
        tre[k] += lazy[k];
		if (l != r) {
	        lazy[k*2] += lazy[k];
	        lazy[k*2+1] += lazy[k];
		}
        lazy[k] = 0;
    }
    if (a > b)
        return;
    if (r < a || b < l)
        return;
    if (a <= l && r <= b) {
		if (l == r && fl == 1)
			tre[k] = v;
		else
	        tre[k] += v;
        if (l != r)
            lazy[k*2] += v, lazy[k*2+1] += v;
        return;
    }
    int m = (l + r) / 2;
    upd(l, m, k*2, a, b, v, fl);
    upd(m + 1, r, k*2+1, a, b, v, fl);
    tre[k] = max(tre[k*2], tre[k*2+1]);
}

vi countScans(vi A, vi X, vi V)
{
    vi ans;
    n = A.size(), q = X.size();
    for (int i = 0; i < n; i++)
    {
        B[i] = A[i];
        arr[i] = {A[i], i};
        C[i] = arr[i];
        ind.insert({A[i], i});
        cid[i] = i;
    }
    sort(cid, cid + n, [&A](int l, int r) -> bool {
        if (A[l] == A[r])
            return l < r;
        return A[l] < A[r];
    });
    for (int i = 0; i < q; i++) {
        ind.erase({B[X[i]], X[i]});
        B[X[i]] = V[i];
        ind.insert({B[X[i]], X[i]});
        int r = ind.order_of_key({B[X[i]], X[i]});
        arr[i + n] = {B[X[i]], X[i]};
        updVal[i + n] = X[i] - r;
    }
    for (int i = 0; i < n; i++) B[i] = A[i];
    sort(arr, arr + n + q);
    build(0, n + q - 1, 1);
    sort(C, C + n);
    for (int i = 0; i < n; i++) {
        int l = lower_bound(arr, arr + n + q, C[i]) - arr;
        upd(0, n + q - 1, 1, l, l, cid[i] - i, 1);
    }
    for (int i = n; i < n + q; i++) {
        int l = lower_bound(arr, arr + n + q, mp(B[X[i-n]], X[i-n])) - arr;
        B[X[i-n]] = V[i-n];
        int r = lower_bound(arr, arr + n + q, mp(B[X[i-n]], X[i-n])) - arr;
        upd(0, n + q - 1, 1, l, l, -INF, 1);
        upd(0, n + q - 1, 1, r, r, updVal[i], 1);
        if (l < r) upd(0, n + q - 1, 1, l + 1, r - 1, 1, 0);
        else upd(0, n + q - 1, 1, r + 1, l - 1, -1, 0);
        ans.pb(tre[1]);
    }
    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 4 ms 512 KB Output is correct
2 Correct 6 ms 512 KB Output is correct
3 Correct 9 ms 768 KB Output is correct
4 Correct 11 ms 768 KB Output is correct
5 Correct 7 ms 640 KB Output is correct
6 Correct 8 ms 768 KB Output is correct
7 Correct 10 ms 768 KB Output is correct
8 Correct 8 ms 768 KB Output is correct
9 Correct 8 ms 768 KB Output is correct
10 Correct 8 ms 768 KB Output is correct
11 Correct 11 ms 768 KB Output is correct
12 Correct 8 ms 768 KB Output is correct
13 Correct 10 ms 768 KB Output is correct
14 Correct 9 ms 896 KB Output is correct
15 Correct 9 ms 768 KB Output is correct
16 Correct 9 ms 768 KB Output is correct
17 Correct 9 ms 768 KB Output is correct
18 Correct 10 ms 768 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 512 KB Output is correct
2 Correct 6 ms 512 KB Output is correct
3 Correct 9 ms 768 KB Output is correct
4 Correct 11 ms 768 KB Output is correct
5 Correct 7 ms 640 KB Output is correct
6 Correct 8 ms 768 KB Output is correct
7 Correct 10 ms 768 KB Output is correct
8 Correct 8 ms 768 KB Output is correct
9 Correct 8 ms 768 KB Output is correct
10 Correct 8 ms 768 KB Output is correct
11 Correct 11 ms 768 KB Output is correct
12 Correct 8 ms 768 KB Output is correct
13 Correct 10 ms 768 KB Output is correct
14 Correct 9 ms 896 KB Output is correct
15 Correct 9 ms 768 KB Output is correct
16 Correct 9 ms 768 KB Output is correct
17 Correct 9 ms 768 KB Output is correct
18 Correct 10 ms 768 KB Output is correct
19 Correct 32 ms 1764 KB Output is correct
20 Correct 30 ms 1864 KB Output is correct
21 Correct 28 ms 1912 KB Output is correct
22 Correct 32 ms 1912 KB Output is correct
23 Correct 42 ms 1912 KB Output is correct
24 Correct 30 ms 1912 KB Output is correct
25 Correct 31 ms 1852 KB Output is correct
26 Correct 38 ms 1892 KB Output is correct
27 Correct 27 ms 1912 KB Output is correct
28 Correct 28 ms 1920 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 3708 KB Output is correct
2 Correct 123 ms 6392 KB Output is correct
3 Correct 266 ms 9468 KB Output is correct
4 Correct 258 ms 9528 KB Output is correct
5 Correct 229 ms 9464 KB Output is correct
6 Correct 268 ms 9468 KB Output is correct
7 Correct 268 ms 9668 KB Output is correct
8 Correct 289 ms 9488 KB Output is correct
9 Correct 263 ms 9500 KB Output is correct
10 Correct 227 ms 9604 KB Output is correct
11 Correct 218 ms 9772 KB Output is correct
12 Correct 208 ms 9632 KB Output is correct
13 Correct 204 ms 9556 KB Output is correct
14 Correct 220 ms 9676 KB Output is correct
15 Correct 235 ms 9592 KB Output is correct
16 Correct 196 ms 9592 KB Output is correct
17 Correct 199 ms 9464 KB Output is correct
18 Correct 197 ms 9592 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 512 KB Output is correct
2 Correct 6 ms 512 KB Output is correct
3 Correct 9 ms 768 KB Output is correct
4 Correct 11 ms 768 KB Output is correct
5 Correct 7 ms 640 KB Output is correct
6 Correct 8 ms 768 KB Output is correct
7 Correct 10 ms 768 KB Output is correct
8 Correct 8 ms 768 KB Output is correct
9 Correct 8 ms 768 KB Output is correct
10 Correct 8 ms 768 KB Output is correct
11 Correct 11 ms 768 KB Output is correct
12 Correct 8 ms 768 KB Output is correct
13 Correct 10 ms 768 KB Output is correct
14 Correct 9 ms 896 KB Output is correct
15 Correct 9 ms 768 KB Output is correct
16 Correct 9 ms 768 KB Output is correct
17 Correct 9 ms 768 KB Output is correct
18 Correct 10 ms 768 KB Output is correct
19 Correct 32 ms 1764 KB Output is correct
20 Correct 30 ms 1864 KB Output is correct
21 Correct 28 ms 1912 KB Output is correct
22 Correct 32 ms 1912 KB Output is correct
23 Correct 42 ms 1912 KB Output is correct
24 Correct 30 ms 1912 KB Output is correct
25 Correct 31 ms 1852 KB Output is correct
26 Correct 38 ms 1892 KB Output is correct
27 Correct 27 ms 1912 KB Output is correct
28 Correct 28 ms 1920 KB Output is correct
29 Correct 41 ms 3708 KB Output is correct
30 Correct 123 ms 6392 KB Output is correct
31 Correct 266 ms 9468 KB Output is correct
32 Correct 258 ms 9528 KB Output is correct
33 Correct 229 ms 9464 KB Output is correct
34 Correct 268 ms 9468 KB Output is correct
35 Correct 268 ms 9668 KB Output is correct
36 Correct 289 ms 9488 KB Output is correct
37 Correct 263 ms 9500 KB Output is correct
38 Correct 227 ms 9604 KB Output is correct
39 Correct 218 ms 9772 KB Output is correct
40 Correct 208 ms 9632 KB Output is correct
41 Correct 204 ms 9556 KB Output is correct
42 Correct 220 ms 9676 KB Output is correct
43 Correct 235 ms 9592 KB Output is correct
44 Correct 196 ms 9592 KB Output is correct
45 Correct 199 ms 9464 KB Output is correct
46 Correct 197 ms 9592 KB Output is correct
47 Correct 1206 ms 32184 KB Output is correct
48 Correct 5066 ms 84464 KB Output is correct
49 Correct 5656 ms 92716 KB Output is correct
50 Correct 5481 ms 92632 KB Output is correct
51 Correct 5504 ms 92676 KB Output is correct
52 Correct 5577 ms 92736 KB Output is correct
53 Correct 5032 ms 92756 KB Output is correct
54 Correct 5307 ms 92884 KB Output is correct
55 Correct 4984 ms 92884 KB Output is correct
56 Correct 4547 ms 92848 KB Output is correct
57 Correct 5199 ms 92872 KB Output is correct
58 Correct 5154 ms 92760 KB Output is correct
59 Correct 4244 ms 91504 KB Output is correct
60 Correct 4316 ms 91440 KB Output is correct
61 Correct 4019 ms 91492 KB Output is correct
62 Correct 3978 ms 91196 KB Output is correct
63 Correct 3803 ms 91260 KB Output is correct
64 Correct 4113 ms 91304 KB Output is correct
65 Correct 3610 ms 91224 KB Output is correct
66 Correct 3586 ms 91208 KB Output is correct
67 Correct 3689 ms 91208 KB Output is correct