#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cassert>
#include <vector>
typedef long long ll;
typedef long double ld;
const ll INF = 1e17;
const int LEN = 1e3 + 1;
const ld TOL = 1e-7;
const ll MOD = 1'000'000'007;
const ll DEN = 1LL << 32;
inline int sign(const ld& x) { return x < -TOL ? -1 : x > TOL; }
inline bool zero(const ld& x) { return !sign(x); }
inline ll sq(int x) { return (ll)x * x; }
inline ll gcd(ll a, ll b) { return !b ? a : gcd(b, a % b); }
int N, M, T, Q;
char sc;
struct BigInt {
ll hi, lo;
inline BigInt(ll HI = 0, ll LO = 0) : hi(HI), lo(LO) {}
inline BigInt operator - () const { return { -hi, -lo }; }
inline BigInt norm() const { if (lo < 0) return -*this; return *this; }//den < 0
inline bool operator < (const BigInt& p) const { return hi == p.hi ? lo < p.lo : hi < p.hi; }
inline bool operator == (const BigInt& p) const { return hi == p.hi && lo == p.lo; }
};
inline BigInt mul(ll a, ll b) {
assert(0 < b && b < DEN);
int m = a < 0 ? -1 : 1;
if (m < 0) a *= -1;
ll hi = (a / DEN) * b;
ll lo = (a % DEN) * b;
hi += lo / DEN;
lo %= DEN;
return BigInt(m * hi, m * lo);
}
inline bool cmp_frac(BigInt p, BigInt q) { p = p.norm(); q = q.norm(); return mul(p.hi, q.lo) < mul(q.hi, p.lo); }
inline bool eq_frac(BigInt p, BigInt q) { p = p.norm(); q = q.norm(); return mul(p.hi, q.lo) == mul(q.hi, p.lo); }
struct Pos {
ll x, y;
ll den;
bool dark;
inline Pos(ll X = 0, ll Y = 0, ll d = 1, bool S = 0) : x(X), y(Y), den(d), dark(S) {}
inline bool operator == (const Pos& p) const { return x == p.x && y == p.y; }
inline bool operator < (const Pos& p) const { return x == p.x ? y < p.y : x < p.x; }
inline Pos operator + (const Pos& p) const { return { x + p.x, y + p.y }; }
inline Pos operator - (const Pos& p) const { return { x - p.x, y - p.y }; }
inline Pos operator * (const ll& n) const { return { x * n, y * n }; }
inline Pos operator / (const ll& n) const { return { x / n, y / n }; }
inline ll operator * (const Pos& p) const { return x * p.x + y * p.y; }
inline ll operator / (const Pos& p) const { return x * p.y - y * p.x; }
inline Pos operator - () const { return { -x, -y, den }; }
inline Pos operator ~ () const { return { -y, x, den }; }
inline ll Euc() const { return x * x + y * y; }
inline friend std::istream& operator >> (std::istream& is, Pos& p) { is >> p.x >> p.y; return is; }
inline friend std::ostream& operator << (std::ostream& os, const Pos& p) { os << p.x << " " << p.y; return os; }
} H[LEN]; const Pos O = { 0, 0 };
typedef std::vector<Pos> Polygon;
struct Line {//ax + by = c
Pos s;
ll c;
inline Line(Pos ps = Pos(0, 0), Pos pe = Pos(0, 0)) { s = ~(pe - ps); c = s * ps; }
friend std::ostream& operator << (std::ostream& os, const Line& l) { os << l.s << " " << l.c; return os; }
};
inline Pos intersection(const Line& l1, const Line& l2) {
Pos s = l1.s * l2.c - l2.s * l1.c;
s.den = l1.s / l2.s;
return ~s;
}
//Pos intersection(const Line& l1, const Line& l2) {
// Pos v1 = l1.s, v2 = l2.s;
// ld det = v1 / v2;
// return {
// (l1.c * v2.y - l2.c * v1.y) / det,
// (l2.c * v1.x - l1.c * v2.x) / det,
// };
//}
inline ll cross(const Pos& d1, const Pos& d2, const Pos& d3) { return (d2 - d1) / (d3 - d2); }
inline ll cross(const Pos& d1, const Pos& d2, const Pos& d3, const Pos& d4) { return (d2 - d1) / (d4 - d3); }
inline ll dot(const Pos& d1, const Pos& d2, const Pos& d3) { return (d2 - d1) * (d3 - d2); }
inline int ccw(const Pos& d1, const Pos& d2, const Pos& d3) { ll ret = cross(d1, d2, d3); return ret < 0 ? -1 : !!ret; }
inline bool not_zig_zag(const int& i) {
Pos& p1 = H[(i - 1 + N) % N], & p2 = H[i];
Pos& p3 = H[(i + 1) % N], & p4 = H[(i + 2) % N];
return ccw(p1, p2, p3) == ccw(p2, p3, p4); }
bool inner_check(const Pos& p1, const Pos& p2, const Pos& p3, const Pos& q) {
return cross(p1, p2, q) < 0 && cross(p2, p3, q) < 0 && cross(p3, p1, q) < 0;
}
inline bool closer(const Pos& p1, const Pos& p2, const Pos& cur, const Pos& candi) {
return std::abs(cross(p1, p2, cur)) > std::abs(cross(p1, p2, candi));
}
inline BigInt dot(const Pos& vec, const Pos& inx) { return BigInt(vec * inx, inx.den); }
inline bool include(const Line& l, const Pos& inx) { return cmp_frac(dot(l.s, inx), BigInt(l.c, 1)); }
inline bool on_line(const Line& l, const Pos& inx) { return eq_frac(dot(l.s, inx), BigInt(l.c, 1)); }
inline std::string half_plane_intersection_include_x(const int& x = -1) {
//x == -1 : no dark wall
//x != -1 : only one dark wall
//the two walls next to the dark wall
//must have a zigzag shape to be bright.
if (x != -1 && not_zig_zag(x)) return "NIE";
int sz = (x == -1 ? N : x + 1);
int i = (x == -1 ? 0 : x);
for (i; i < sz; i++) {//half_plane_intersection must include i1-i2
Pos& i1 = H[i], & i2 = H[(i + 1) % N];
Pos vec = i2 - i1;
bool rvs = 0;
BigInt hi = { INF, 1 }, lo = { -INF, 1 };
for (int j = 0; j < N; j++) {
if (j == i) continue;
Pos& j1 = H[j], & j2 = H[(j + 1) % N];
ll det = cross(i1, i2, j1, j2);
if (!det) {
if (cross(j1, j2, i1) >= 0) { rvs = 1; break; }
continue;
}
BigInt inx = dot(vec, intersection(Line(i1, i2), Line(j1, j2)));
if (det < 0 && cmp_frac(inx, hi)) hi = inx;
else if (det > 0 && cmp_frac(lo, inx)) lo = inx;
}
if (cmp_frac(lo, hi) && !rvs) return "TAK";
}
return "NIE";
}
inline std::string query() {
std::cin >> N;
for (int i = 0; i < N; i++) std::cin >> H[i];
int illum = 0, dark = -1;
for (int i = 0; i < N; i++) {
std::cin >> sc;
H[i].dark = sc == 'C';
if (!H[i].dark) illum++;
if (H[i].dark) dark = i;
}
if (illum < 3) return "NIE";
if (illum >= N - 1) return half_plane_intersection_include_x(dark);
int i1 = 0, i2 = 0, i3 = 0;
while (1) {//merge all dark walls
//a room with only dark walls, leaving only a door.
if (N <= 3) return "NIE";//at least one must be dark.
i1 = 0; i2 = 0; i3 = 0;
for (i1 = 0; i1 < N; i1++) {
i2 = (i1 + 1) % N;
i3 = (i2 + 1) % N;
if (H[i1].dark && H[i2].dark && cross(H[i1], H[i2], H[i3]) < 0) break;
}
if (i1 == N) break;//all dark walls are unattached.
int c = -1;//closest point to wall i1-i2
for (int i = 0; i < N; i++) {
if (i == i1 || i == i2 || i == i3) continue;
if (inner_check(H[i1], H[i2], H[i3], H[i])) {
if (c == -1 || closer(H[i1], H[i2], H[c], H[i]))
c = i;
}
}
if (c == -1) {//merge two dark walls
for (int i = i2 + 1; i < N; i++) H[i - 1] = H[i];
N--;
continue;
}
int c1 = i2, c2 = c;
if (c2 < c1) std::swap(c1, c2);
bool dark_hi = 1, dark_lo = 1;
for (int i = 0; i < N; i++) {
if (!H[i].dark) {
if (c1 <= i && i < c2) dark_hi = 0;
else dark_lo = 0;
}
}
if (!dark_hi && !dark_lo) return "NIE";//both sides of a dark passage must be bright.
if (dark_hi) {//merge dark walls
int len = c2 - c1 - 1;
for (int i = c2; i < N; i++) H[i - len] = H[i];
N -= len;
}
if (dark_lo) {//merge dark walls
for (int i = c1; i <= c2; i++) H[i - c1] = H[i];
N = c2 - c1 + 1;
}
}
i1 = 0;
while (!H[i1].dark) i1++;
i2 = i1 + 1;
while (i2 < N && !H[i2].dark) i2++;
//cnly one dark wall
if (i2 == N) return half_plane_intersection_include_x(i1);
//two or more dark walls
//all dark walls must intersect at a point
//and all left half-plane of light wall must include that point.
Pos& w1 = H[i1], & w2 = H[(i1 + 1) % N];
Pos& w3 = H[i2], & w4 = H[(i2 + 1) % N];
if (!cross(w1, w2, w3, w4)) return "NIE";
Pos inx = intersection(Line(w1, w2), Line(w3, w4));
for (int i = 0; i < N; i++) {
Pos& p1 = H[i], & p2 = H[(i + 1) % N];
if (p1.dark) {
if (p2.dark) return "NIE";
if (not_zig_zag(i)) return "NIE";
if (!on_line(Line(p1, p2), inx)) return "NIE";
}
if (!p1.dark && !include(Line(p1, p2), inx)) return "NIE";
}
return "TAK";
}
inline void solve() {
std::cin.tie(0)->sync_with_stdio(0);
std::cout.tie(0);
std::cin >> T;
while (T--) std::cout << query() << "\n";
return;
}
int main() { solve(); return 0; }//boj8237 Tapestries refer to model_code (oj.uz)
Compilation message
gob.cpp: In function 'std::string half_plane_intersection_include_x(const int&)':
gob.cpp:108:7: warning: statement has no effect [-Wunused-value]
108 | for (i; i < sz; i++) {//half_plane_intersection must include i1-i2
| ^
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
344 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
1 ms |
348 KB |
Output is correct |
8 |
Correct |
1 ms |
348 KB |
Output is correct |
9 |
Correct |
17 ms |
348 KB |
Output is correct |
10 |
Correct |
11 ms |
524 KB |
Output is correct |