답안 #1008934

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
1008934 2024-06-27T05:57:09 Z GrindMachine Spy 3 (JOI24_spy3) C++17
92 / 100
149 ms 12968 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(...) 42
#endif

/*

refs:
https://codeforces.com/blog/entry/127315?#comment-1131129

*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

#include "Aoi.h"

namespace {

    int variable_example = 0;

    int function_example(int a, int b) { return a + b; }

}  // namespace

std::string aoi(int n, int m, int q, int k, std::vector<int> A,
                std::vector<int> B, std::vector<long long> C,
                std::vector<int> T, std::vector<int> X) {
    
    // n = #of nodes, m = #of edges
    // A,B,C = edges of graph
    // q = #of query cities
    // T = query cities
    // k = #of deleted edges
    // X = ids of deleted edges

    vector<pll> adj1[n];
    vector<vector<ll>> adj2(n);
    map<pll,ll> mp;

    rep(i,m){
        ll u = A[i], v = B[i], w = C[i];
        adj1[u].pb({v,w}), adj1[v].pb({u,w});
        mp[{u,v}] = mp[{v,u}] = i;
    }

    // build sp tree
    priority_queue<array<ll,3>,vector<array<ll,3>>,greater<array<ll,3>>> pq;
    pq.push({0,0,-1});
    vector<ll> par(n,-1);
    vector<bool> vis(n);
    vector<ll> depth(n);

    while(!pq.empty()){
        auto [dis,u,p] = pq.top();
        pq.pop();

        if(vis[u]) conts;
        vis[u] = 1;
        par[u] = p;
        if(p != -1){
            depth[u] = depth[p]+1;
            adj2[p].pb(u);
        }

        // cout << p << " " << u << endl;

        for(auto [v,w] : adj1[u]){
            pq.push({dis+w,v,u});
        }
    }

    // calc tin,tout
    vector<ll> tin(n), tout(n);
    ll timer = 0;

    auto dfs1 = [&](ll u, auto &&dfs1) -> void{
        tin[u] = timer++;
        trav(v,adj2[u]){
            dfs1(v,dfs1);
        }
        tout[u] = timer-1;
    };

    dfs1(0,dfs1);

    auto is_ances = [&](ll u, ll v){
        return tin[u] <= tin[v] and tout[u] >= tout[v];
    };

    auto get_lca = [&](ll u, ll v){
        // cout << u << " " << v << " ";
        while(u != v){
            if(depth[u] < depth[v]) swap(u,v);
            u = par[u];
        }

        // cout << u << endl;
        return u;
    };

    // find the nodes of the virtual tree
    vector<pll> nodes;
    nodes.pb({0,0});
    rep(i,q){
        ll u = T[i];
        nodes.pb({tin[u],u});
    }

    sort(all(nodes));
    nodes.resize(unique(all(nodes))-nodes.begin());
    ll initial_size = sz(nodes);

    rep(i,initial_size-1){
        ll lca = get_lca(nodes[i].ss,nodes[i+1].ss);
        nodes.pb({tin[lca],lca});
    }

    sort(all(nodes));
    nodes.resize(unique(all(nodes))-nodes.begin());
    assert(sz(nodes) <= 2*q);

    // for(auto [ti,u] : nodes){
    //     cout << ti << " " << u << endl;
    // }
    
    // build the virtual tree + construct walk
    stack<ll> stk;
    vector<ll> pv(n,-1);
    vector<ll> node_id(n,-1);
    stk.push(0);
    node_id[0] = 0;
    string walk = "";
    ll ptr = 1;
    rep1(i,sz(nodes)-1){
        ll u = nodes[i].ss;
        node_id[u] = ptr++;
        while(!is_ances(stk.top(),u)){
            stk.pop();
            walk.pb('0');
        }
        pv[u] = stk.top();
        stk.push(u);
        walk.pb('1');
    }

    while(!stk.empty()){
        stk.pop();
        walk.pb('0');
    }
    assert(sz(walk) == 2*sz(nodes)-1);
    
    // for each edge in the sp tree, find the virtual edge that it belongs to
    vector<ll> idv(m,2*q-1);
    rep1(i,sz(nodes)-1){
        ll u = nodes[i].ss;
        ll incoming_edge = node_id[u]-1;
        assert(incoming_edge >= 0);
        ll ppv = pv[u];

        while(u != ppv){
            ll p = par[u];
            ll id = mp[{u,p}];
            idv[id] = incoming_edge;
            u = p;
        }
    }

    // for each deleted edge, encode the edge in the virtual tree that it belongs to
    string edge_encoding = "";
    rep(i,k){
        ll curr_id = idv[X[i]];
        rev(bit,4,0){
            ll b = 0;
            if(curr_id&(1<<bit)) b = 1;
            edge_encoding.pb(char('0'+b));
        }
    }

    // for each query node, encode it's corresponding node in the virtual tree
    string node_encoding = "";
    rep(i,q){
        ll curr_id = node_id[T[i]];
        assert(curr_id != -1);

        rev(bit,4,0){
            ll b = 0;
            if(curr_id&(1<<bit)) b = 1;
            node_encoding.pb(char('0'+b));
        }
    }

    string s = walk+edge_encoding+node_encoding;
    return s;

    // string s = "";

    // rep(i,q){
    //     ll u = T[i];
    //     vector<ll> path;
    //     while(u){
    //         path.pb(u);
    //         u = par[u];
    //     }
    //     path.pb(0);
        
    //     vector<ll> edges;
    //     rep(j,sz(path)-1){
    //         pll px = {path[j],path[j+1]};
    //         edges.pb(mp[px]);
    //     }

    //     sort(all(edges));

    //     rep(j,k){
    //         ll id = X[j];
    //         if(binary_search(all(edges),id)){
    //             s.pb('1');
    //         }
    //         else{
    //             s.pb('0');
    //         }
    //     }
    // }

    // return s;

    // variable_example++;
    // variable_example = function_example(1, 2);
    // std::string s(100, '0');
    // s[0] = '1';
    // return s;
}
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(...) 42
#endif

/*

refs:
https://codeforces.com/blog/entry/127315?#comment-1131129

*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

#include "Bitaro.h"

namespace {

    int variable_example = 0;

    int function_example(int a, int b) { return a + b; }

}  // namespace

void bitaro(int n, int m, int q, int k, std::vector<int> A, std::vector<int> B,
            std::vector<long long> C, std::vector<int> T, std::vector<int> X,
            std::string s) {

    // n = #of nodes, m = #of edges
    // A,B,C = edges of graph (edge weights of deleted edges = -1)
    // q = #of query cities
    // T = query cities
    // k = #of deleted edges
    // X = ids of deleted edges
    // s = received string

    vector<pll> adj[n];
    map<pll,ll> mp;

    rep(i,m){
        ll u = A[i], v = B[i], w = C[i];
        adj[u].pb({v,w}), adj[v].pb({u,w});
        mp[{u,v}] = mp[{v,u}] = i;
    }

    // recover the walk
    ll ptr = 0;
    stack<ll> stk;
    vector<ll> pv;
    pv.pb(-1);
    ll curr_node = 0;

    while(curr_node != -1){
        char ch = s[ptr++];
        if(ch == '1'){
            pv.pb(curr_node);
            curr_node = sz(pv)-1;
        }
        else{
            curr_node = pv[curr_node];
        }
    }

    // recover the virtual edge that each deleted edge belongs to
    vector<ll> idv(k,-1);
    rep(i,k){
        ll mask = 0;
        rep(bit,5){
            mask = (mask<<1)|(s[ptr++]-'0');
        }

        idv[i] = mask;
    }

    rep(i,q){
        // recover the corresponding node of T[i] in the virtual tree
        ll src = 0;
        rep(bit,5){
            src = (src<<1)|(s[ptr++]-'0');
        }

        vector<bool> good(2*q);
        ll curr_node = src;

        while(curr_node){
            good[curr_node-1] = 1;
            curr_node = pv[curr_node];
        }

        vector<bool> spl(n); 
        vector<bool> on_path(m);

        rep(j,k){
            ll id = X[j];
            if(good[idv[j]]){
                on_path[id] = 1;
                spl[A[id]] = spl[B[id]] = 1;
            }
        }

        priority_queue<array<ll,3>,vector<array<ll,3>>,greater<array<ll,3>>> pq;
        pq.push({0,0,-1});
        vector<ll> par(n,-1);
        vector<bool> vis(n);

        while(!pq.empty()){
            auto [dis,u,p] = pq.top();
            pq.pop();

            if(vis[u]) conts;
            vis[u] = 1;
            par[u] = p;

            if(spl[u]){
                ll cnt = 0;
                for(auto [v,w] : adj[u]){
                    ll id = mp[{u,v}];
                    if(w == -1 and on_path[id]){
                        cnt++;
                    }
                }

                if(cnt){
                    while(!pq.empty()){
                        pq.pop();
                    }   

                    for(auto [v,w] : adj[u]){
                        ll id = mp[{u,v}];
                        if(w == -1 and on_path[id]){
                            on_path[id] = 0;
                            pq.push({0,v,u});
                        }
                    }

                    conts;
                }
            }

            for(auto [v,w] : adj[u]){
                if(w == -1) conts;
                pq.push({dis+w,v,u});
            }
        }

        vector<ll> nodes;
        ll u = T[i];
        while(u){
            assert(u != -1);
            nodes.pb(u);
            u = par[u];
        }
        nodes.pb(0);
        reverse(all(nodes));

        vector<int> ans;
        rep(j,sz(nodes)-1){
            pll px = {nodes[j],nodes[j+1]};
            ans.pb(mp[px]);
        }

        answer(ans);

        // trav(x,ans) cout << x << " ";
        // cout << endl;
    }

    // variable_example++;
    // variable_example = function_example(1, 2);
    // for (int i = 0; i < q; i++) {
    //     std::vector<int> v(10);
    //     for (int j = 0; j < 10; j++) {
    //         v[j] = j;
    //     }
    //     answer(v);
    // }
}

Compilation message

Aoi.cpp:67:9: warning: 'int {anonymous}::function_example(int, int)' defined but not used [-Wunused-function]
   67 |     int function_example(int a, int b) { return a + b; }
      |         ^~~~~~~~~~~~~~~~
Aoi.cpp:65:9: warning: '{anonymous}::variable_example' defined but not used [-Wunused-variable]
   65 |     int variable_example = 0;
      |         ^~~~~~~~~~~~~~~~

Bitaro.cpp:67:9: warning: 'int {anonymous}::function_example(int, int)' defined but not used [-Wunused-function]
   67 |     int function_example(int a, int b) { return a + b; }
      |         ^~~~~~~~~~~~~~~~
Bitaro.cpp:65:9: warning: '{anonymous}::variable_example' defined but not used [-Wunused-variable]
   65 |     int variable_example = 0;
      |         ^~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 135 ms 12828 KB Output is correct
2 Correct 1 ms 776 KB Output is correct
3 Partially correct 86 ms 10260 KB Partially correct
4 Partially correct 69 ms 9504 KB Partially correct
5 Partially correct 111 ms 10436 KB Partially correct
6 Partially correct 89 ms 10160 KB Partially correct
7 Partially correct 92 ms 10200 KB Partially correct
8 Partially correct 89 ms 10164 KB Partially correct
9 Partially correct 67 ms 9188 KB Partially correct
10 Correct 46 ms 9580 KB Output is correct
11 Partially correct 100 ms 10196 KB Partially correct
12 Correct 84 ms 10176 KB Output is correct
13 Correct 96 ms 10360 KB Output is correct
14 Correct 104 ms 10160 KB Output is correct
15 Correct 78 ms 9588 KB Output is correct
16 Correct 37 ms 9396 KB Output is correct
17 Partially correct 80 ms 9512 KB Partially correct
18 Partially correct 84 ms 9716 KB Partially correct
19 Partially correct 134 ms 12356 KB Partially correct
20 Partially correct 118 ms 12300 KB Partially correct
21 Partially correct 125 ms 12352 KB Partially correct
22 Partially correct 134 ms 12484 KB Partially correct
23 Partially correct 96 ms 12216 KB Partially correct
24 Partially correct 124 ms 12216 KB Partially correct
25 Partially correct 114 ms 10236 KB Partially correct
26 Partially correct 109 ms 10268 KB Partially correct
27 Correct 1 ms 776 KB Output is correct
28 Correct 97 ms 10164 KB Output is correct
29 Partially correct 37 ms 7352 KB Partially correct
30 Correct 80 ms 10672 KB Output is correct
31 Correct 56 ms 10660 KB Output is correct
32 Correct 109 ms 10672 KB Output is correct
33 Correct 105 ms 10284 KB Output is correct
34 Correct 101 ms 10668 KB Output is correct
35 Correct 96 ms 10700 KB Output is correct
36 Correct 98 ms 10676 KB Output is correct
37 Correct 26 ms 5556 KB Output is correct
38 Partially correct 49 ms 7192 KB Partially correct
39 Correct 47 ms 7192 KB Output is correct
40 Correct 22 ms 6936 KB Output is correct
41 Partially correct 130 ms 12280 KB Partially correct
42 Partially correct 86 ms 12532 KB Partially correct
43 Correct 138 ms 12508 KB Output is correct
44 Correct 51 ms 12012 KB Output is correct
45 Partially correct 25 ms 5636 KB Partially correct
46 Partially correct 33 ms 6844 KB Partially correct
47 Correct 40 ms 6636 KB Output is correct
48 Correct 1 ms 788 KB Output is correct
49 Correct 0 ms 1284 KB Output is correct
50 Correct 91 ms 12696 KB Output is correct
51 Partially correct 6 ms 1296 KB Partially correct
52 Correct 2 ms 776 KB Output is correct
53 Correct 139 ms 12968 KB Output is correct
54 Partially correct 68 ms 8156 KB Partially correct
55 Correct 89 ms 8032 KB Output is correct
56 Partially correct 103 ms 12088 KB Partially correct
57 Partially correct 137 ms 12052 KB Partially correct
58 Partially correct 103 ms 9104 KB Partially correct
59 Correct 149 ms 11740 KB Output is correct
60 Partially correct 141 ms 11644 KB Partially correct
61 Correct 133 ms 11776 KB Output is correct
62 Correct 123 ms 11000 KB Output is correct
63 Correct 123 ms 12056 KB Output is correct
64 Correct 39 ms 9848 KB Output is correct
65 Correct 52 ms 7140 KB Output is correct
66 Correct 65 ms 12452 KB Output is correct
67 Correct 57 ms 7324 KB Output is correct
68 Correct 74 ms 12692 KB Output is correct
69 Correct 0 ms 776 KB Output is correct
70 Correct 0 ms 784 KB Output is correct
71 Correct 2 ms 776 KB Output is correct
72 Partially correct 20 ms 5400 KB Partially correct
73 Partially correct 49 ms 6720 KB Partially correct
74 Partially correct 45 ms 6668 KB Partially correct
75 Correct 22 ms 6664 KB Output is correct
76 Correct 1 ms 776 KB Output is correct
77 Correct 97 ms 10276 KB Output is correct
78 Partially correct 107 ms 10196 KB Partially correct
79 Correct 106 ms 10164 KB Output is correct
80 Correct 1 ms 720 KB Output is correct
81 Correct 104 ms 10400 KB Output is correct
82 Partially correct 102 ms 10232 KB Partially correct
83 Correct 96 ms 10168 KB Output is correct