Submission #999999

# Submission time Handle Problem Language Result Execution time Memory
999999 2024-06-16T12:37:39 Z shmax Parachute rings (IOI12_rings) C++17
100 / 100
859 ms 97020 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>

//#pragma GCC optimize("Ofast")
//#pragma GCC target("avx,avx2,fma")
//#pragma GCC optimization ("unroll-loops")
//#pragma GCC target("avx,avx2,sse,sse2,sse3,sse4,popcnt")

using namespace std;
using namespace __gnu_pbds;
#define len(x) (int) x.size()


template<typename T>
using graph = vector<vector<T>>;


template<typename T>
using vec = vector<T>;


struct DSU {
public:
    DSU() : _n(0) {}

    explicit DSU(int n) : _n(n), parent_or_size(n, -1) {}

    int unite(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool one(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
                std::remove_if(result.begin(), result.end(),
                               [&](const std::vector<int> &v) { return v.empty(); }),
                result.end());
        return result;
    }

private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

int n;
graph<int> g;
DSU dsu;
bool is_zero = false;
vec<int> deg;
//set<pair<int, int>> deg_sorted;
int rootb3 = -1;
int cnt3 = 0;
vec<int> roots3;
vec<bool> goods3;
vec<int> neight3;
vec<int> goodneight3;
vec<DSU> dsues;
vec<DSU> neightdsues;
vec<bool> have3;
vec<bool> have;
DSU dsu2;
int cycle_sz;
int cnt_cyc = 0;
int mx1 = 0;
int mx2 = 0;
int mx1id = -1;

void Init(int32_t N_) {
    n = N_;
    have.resize(n, false);
    //    dsu = DSU(n);
    g.resize(n);
    deg.resize(n);
    have3.resize(n);
    for (int i = 0; i < n; i++) {
    }
    dsu2 = DSU(n);
}

pair<bool, DSU> create(int v) {
    DSU d = DSU(n);
    for (int i = 0; i < n; i++) {
        if (i == v) continue;
        for (auto &j: g[i]) {
            if (j == v) continue;
            if (i < j) continue;
            if (d.one(i, j)) {
                return {false, d};
            }
            d.unite(i, j);
        }
    }
    return {true, d};
}

bool add(DSU &d, int a, int b, int v) {
    if (a == v or b == v) return true;
    if (d.one(a, b)) return false;
    d.unite(a, b);
    return true;
}


void Link(int32_t a, int32_t b) {
    if (is_zero)return;
    if (rootb3 != -1) {
        if (!add(dsu, a, b, rootb3)) {
            is_zero = true;
            return;
        }
    } else {
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            goods3[i] = add(dsues[i], a, b, roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                goodneight3[i] = add(neightdsues[i], a, b, neight3[i]);
            }
    }
    g[a].push_back(b);
    g[b].push_back(a);
    if (a != rootb3 and b != rootb3) {
        deg[a]++;
        deg[b]++;


        if (mx1 < deg[a]) {
            if (mx1id != a)
                mx2 = mx1;
            mx1 = deg[a];
            mx1id = a;
        } else if (mx2 < deg[a]) {
            mx2 = deg[a];
        }
        if (mx1 < deg[b]) {
            if (mx1id != b)
                mx2 = mx1;
            mx1 = deg[b];
            mx1id = b;
        } else if (mx2 < deg[b]) {
            mx2 = deg[b];
        }
    }

    if (mx2 > 3) {
        is_zero = true;
        return;
    }
    if (rootb3 != -1 and mx2 >=3) {
        is_zero = true;
        return;
    }
    if (rootb3 == -1 and mx1 > 3) {
        rootb3 = mx1id;
        for (auto u: g[rootb3])
            deg[u]--;
        mx1 = 0;
        mx2 = 0;
        mx1id = -1;
        for (int i = 0; i < n; i++) {
            if (deg[i] > mx1) {
                mx2 = mx1;
                mx1 = deg[i];
                mx1id = i;
            } else if (mx2 < deg[i]) {
                mx2 = deg[i];
            }
        }
        if (mx2 >= 3) {
            is_zero = true;
            return;
        }

        auto [f, d] = create(rootb3);
        dsu = d;
        if (!f) {
            is_zero = true;
            return;
        }
        return;
    }
    if (rootb3 == -1) {
        if (deg[a] == 3) {
            {
                cnt3++;
                roots3.push_back(a);
                auto [f, d] = create(a);
                dsues.push_back(d);
                goods3.push_back(f);
            }
        }
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        if (deg[b] == 3) {
            {
                cnt3++;
                roots3.push_back(b);
                auto [f, d] = create(b);
                dsues.push_back(d);
                goods3.push_back(f);
            }
            if (cnt3 < 3) {
                for (auto x: g[b]) {
                    if (have3[x] or deg[x] == 3) continue;
                    if (!check(x)) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (deg[a] == 3) {
            if (cnt3 < 3) {
                for (auto x: g[a]) {
                    if (have3[x] or deg[x] == 3) continue;
                    if (!check(x)) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (cnt3 > 4) {
            is_zero = true;
            return;
        }

    }
    if (roots3.empty() and rootb3 == -1) {
        if (dsu2.one(a, b)) {
            cnt_cyc++;
            cycle_sz = dsu2.size(a);
        } else {
            dsu2.unite(a, b);
        }
        if (cnt_cyc > 1) {
            is_zero = true;
        }
    }
}


int32_t CountCritical() {
    if (is_zero) return 0;
    if (n == 1) return 1;
    if (rootb3 != -1) {
        return 1;
    }
    if (!roots3.empty()) {
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        vec<int> can;
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            if (have[roots3[i]]) continue;
            if (!check(roots3[i])) continue;
            have[roots3[i]] = true;
            can.push_back(roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                if (have[neight3[i]]) continue;
                if (!check(neight3[i])) continue;
                have[roots3[i]] = true;
                can.push_back(neight3[i]);
            }
        for (auto &i: can) {
            have[i] = false;
        }
        return len(can);
    }
    if (cnt_cyc == 1)
        return cycle_sz;
    if (cnt_cyc == 0)
        return n;
}

Compilation message

rings.cpp: In function 'int32_t CountCritical()':
rings.cpp:329:1: warning: control reaches end of non-void function [-Wreturn-type]
  329 | }
      | ^
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 800 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 2 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 160 ms 33108 KB Output is correct
2 Correct 467 ms 66336 KB Output is correct
3 Correct 164 ms 70596 KB Output is correct
4 Correct 498 ms 69056 KB Output is correct
5 Correct 571 ms 70480 KB Output is correct
6 Correct 532 ms 68808 KB Output is correct
7 Correct 173 ms 78204 KB Output is correct
8 Correct 780 ms 88768 KB Output is correct
9 Correct 859 ms 97020 KB Output is correct
10 Correct 350 ms 68328 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 800 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 2 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 5 ms 1372 KB Output is correct
13 Correct 4 ms 1372 KB Output is correct
14 Correct 2 ms 1116 KB Output is correct
15 Correct 2 ms 1628 KB Output is correct
16 Correct 2 ms 1116 KB Output is correct
17 Correct 2 ms 1112 KB Output is correct
18 Correct 3 ms 1884 KB Output is correct
19 Correct 3 ms 1116 KB Output is correct
20 Correct 5 ms 1116 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 800 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 2 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
11 Correct 2 ms 860 KB Output is correct
12 Correct 5 ms 1372 KB Output is correct
13 Correct 4 ms 1372 KB Output is correct
14 Correct 2 ms 1116 KB Output is correct
15 Correct 2 ms 1628 KB Output is correct
16 Correct 2 ms 1116 KB Output is correct
17 Correct 2 ms 1112 KB Output is correct
18 Correct 3 ms 1884 KB Output is correct
19 Correct 3 ms 1116 KB Output is correct
20 Correct 5 ms 1116 KB Output is correct
21 Correct 11 ms 2908 KB Output is correct
22 Correct 18 ms 4440 KB Output is correct
23 Correct 22 ms 5468 KB Output is correct
24 Correct 23 ms 6624 KB Output is correct
25 Correct 9 ms 6228 KB Output is correct
26 Correct 22 ms 7312 KB Output is correct
27 Correct 21 ms 5468 KB Output is correct
28 Correct 16 ms 6820 KB Output is correct
29 Correct 16 ms 7756 KB Output is correct
30 Correct 27 ms 6492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 1 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 1 ms 800 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 2 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
11 Correct 160 ms 33108 KB Output is correct
12 Correct 467 ms 66336 KB Output is correct
13 Correct 164 ms 70596 KB Output is correct
14 Correct 498 ms 69056 KB Output is correct
15 Correct 571 ms 70480 KB Output is correct
16 Correct 532 ms 68808 KB Output is correct
17 Correct 173 ms 78204 KB Output is correct
18 Correct 780 ms 88768 KB Output is correct
19 Correct 859 ms 97020 KB Output is correct
20 Correct 350 ms 68328 KB Output is correct
21 Correct 2 ms 860 KB Output is correct
22 Correct 5 ms 1372 KB Output is correct
23 Correct 4 ms 1372 KB Output is correct
24 Correct 2 ms 1116 KB Output is correct
25 Correct 2 ms 1628 KB Output is correct
26 Correct 2 ms 1116 KB Output is correct
27 Correct 2 ms 1112 KB Output is correct
28 Correct 3 ms 1884 KB Output is correct
29 Correct 3 ms 1116 KB Output is correct
30 Correct 5 ms 1116 KB Output is correct
31 Correct 11 ms 2908 KB Output is correct
32 Correct 18 ms 4440 KB Output is correct
33 Correct 22 ms 5468 KB Output is correct
34 Correct 23 ms 6624 KB Output is correct
35 Correct 9 ms 6228 KB Output is correct
36 Correct 22 ms 7312 KB Output is correct
37 Correct 21 ms 5468 KB Output is correct
38 Correct 16 ms 6820 KB Output is correct
39 Correct 16 ms 7756 KB Output is correct
40 Correct 27 ms 6492 KB Output is correct
41 Correct 105 ms 26916 KB Output is correct
42 Correct 322 ms 62764 KB Output is correct
43 Correct 134 ms 58896 KB Output is correct
44 Correct 159 ms 68816 KB Output is correct
45 Correct 241 ms 73488 KB Output is correct
46 Correct 314 ms 63692 KB Output is correct
47 Correct 405 ms 65368 KB Output is correct
48 Correct 148 ms 79552 KB Output is correct
49 Correct 303 ms 67924 KB Output is correct
50 Correct 371 ms 67148 KB Output is correct
51 Correct 130 ms 52144 KB Output is correct
52 Correct 150 ms 63460 KB Output is correct
53 Correct 138 ms 78468 KB Output is correct
54 Correct 656 ms 79320 KB Output is correct
55 Correct 460 ms 85232 KB Output is correct