Submission #999993

# Submission time Handle Problem Language Result Execution time Memory
999993 2024-06-16T12:30:02 Z shmax Parachute rings (IOI12_rings) C++17
52 / 100
4000 ms 126400 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>

//#pragma GCC optimize("Ofast")
//#pragma GCC target("avx,avx2,fma")
//#pragma GCC optimization ("unroll-loops")
//#pragma GCC target("avx,avx2,sse,sse2,sse3,sse4,popcnt")

using namespace std;
using namespace __gnu_pbds;
#define len(x) (int) x.size()


template<typename T>
using graph = vector<vector<T>>;


template<typename T>
using vec = vector<T>;


struct DSU {
public:
    DSU() : _n(0) {}

    explicit DSU(int n) : _n(n), parent_or_size(n, -1) {}

    int unite(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool one(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
                std::remove_if(result.begin(), result.end(),
                               [&](const std::vector<int> &v) { return v.empty(); }),
                result.end());
        return result;
    }

private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

int n;
graph<int> g;
DSU dsu;
bool is_zero = false;
vec<int> deg;
set<pair<int, int>> deg_sorted;
int rootb3 = -1;
int cnt3 = 0;
vec<int> roots3;
vec<bool> goods3;
vec<int> neight3;
vec<int> goodneight3;
vec<DSU> dsues;
vec<DSU> neightdsues;
vec<bool> have3;

DSU dsu2;
int cycle_sz;
int cnt_cyc = 0;

void Init(int32_t N_) {
    n = N_;
    //    dsu = DSU(n);
    g.resize(n);
    deg.resize(n);
    deg_sorted.clear();
    have3.resize(n);
    for (int i = 0; i < n; i++) {
        deg_sorted.insert({0, i});
    }
    dsu2 = DSU(n);
}

pair<bool, DSU> create(int v) {
    DSU d = DSU(n);
    for (int i = 0; i < n; i++) {
        if (i == v) continue;
        for (auto &j: g[i]) {
            if (j == v) continue;
            if (i < j) continue;
            if (d.one(i, j)) {
                return {false, d};
            }
            d.unite(i, j);
        }
    }
    return {true, d};
}

bool add(DSU &d, int a, int b, int v) {
    if (a == v or b == v) return true;
    if (d.one(a, b)) return false;
    d.unite(a, b);
    return true;
}

void Link(int32_t a, int32_t b) {
    if (is_zero)return;
    if (rootb3 != -1) {
        if (!add(dsu, a, b, rootb3)) {
            is_zero = true;
            return;
        }
    } else {
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            goods3[i] = add(dsues[i], a, b, roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                goodneight3[i] = add(neightdsues[i], a, b, neight3[i]);
            }
    }
    deg_sorted.erase({deg[a], a});
    deg_sorted.erase({deg[b], b});
    g[a].push_back(b);
    g[b].push_back(a);
    if (a != rootb3 and b != rootb3) {
        deg[a]++;
        deg[b]++;
    }
    deg_sorted.insert({deg[a], a});
    deg_sorted.insert({deg[b], b});
    if (n != 1 and deg_sorted.rbegin()->first > 3 and prev(prev(deg_sorted.end()))->first > 3) {
        is_zero = true;
    }
    if (rootb3 != -1 and prev(prev(deg_sorted.end()))->first >= 3) {
        is_zero = true;
        return;
    }
    if (rootb3 == -1 and deg_sorted.rbegin()->first > 3) {
        rootb3 = deg_sorted.rbegin()->second;
        for (auto &i: g[rootb3]) {
            deg_sorted.erase({deg[i], i});
            deg[i]--;
            deg_sorted.insert({deg[i], i});
        }
        if (n != 1 and prev(prev(deg_sorted.end()))->first > 2)
            is_zero = true;
        auto [f, d] = create(rootb3);
        dsu = d;
        if (!f) {
            is_zero = true;
            return;
        }
    }
    if (rootb3 == -1) {
        if (deg[a] == 3) {
            {
                cnt3++;
                roots3.push_back(a);
                auto [f, d] = create(a);
                dsues.push_back(d);
                goods3.push_back(f);
            }
            if (cnt3 < 3) {
                for (auto x: g[a]) {
                    if (have3[x] or deg[x] == 3) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (deg[b] == 3) {
            {
                cnt3++;
                roots3.push_back(b);
                auto [f, d] = create(b);
                dsues.push_back(d);
                goods3.push_back(f);
            }
            if (cnt3 < 3) {
                for (auto x: g[b]) {
                    if (have3[x] or deg[x] == 3) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (deg[a] == 3) {
            if (cnt3 < 3) {
                for (auto x: g[a]) {
                    if (have3[x] or deg[x] == 3) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (cnt3 > 4) {
            is_zero = true;
            return;
        }

    }
    if (roots3.empty() and rootb3 == -1) {
        if (dsu2.one(a, b)) {
            cnt_cyc++;
            cycle_sz = dsu2.size(a);
        } else {
            dsu2.unite(a, b);
        }
        if (cnt_cyc > 1) {
            is_zero = true;
        }
    }
}


int32_t CountCritical() {
    if (is_zero) return 0;
    if (n == 1) return 1;
    if (rootb3 != -1) {
        return 1;
    }
    if (!roots3.empty()) {
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        set<int> can;
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            if (!check(roots3[i])) continue;
            can.insert(roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                if (!check(neight3[i])) continue;
                can.insert(neight3[i]);
            }
        return len(can);
    }
    if (cnt_cyc == 1)
        return cycle_sz;
    if (cnt_cyc == 0)
        return n;
}

Compilation message

rings.cpp: In function 'int32_t CountCritical()':
rings.cpp:293:1: warning: control reaches end of non-void function [-Wreturn-type]
  293 | }
      | ^
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 4 ms 856 KB Output is correct
3 Correct 5 ms 1112 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 5 ms 912 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 3 ms 860 KB Output is correct
9 Correct 6 ms 1116 KB Output is correct
10 Correct 6 ms 1116 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1161 ms 57468 KB Output is correct
2 Correct 3057 ms 103640 KB Output is correct
3 Correct 425 ms 126400 KB Output is correct
4 Execution timed out 4033 ms 111444 KB Time limit exceeded
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 4 ms 856 KB Output is correct
3 Correct 5 ms 1112 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 5 ms 912 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 3 ms 860 KB Output is correct
9 Correct 6 ms 1116 KB Output is correct
10 Correct 6 ms 1116 KB Output is correct
11 Correct 6 ms 1112 KB Output is correct
12 Correct 15 ms 2140 KB Output is correct
13 Correct 11 ms 1884 KB Output is correct
14 Correct 8 ms 1624 KB Output is correct
15 Correct 9 ms 2652 KB Output is correct
16 Correct 10 ms 1628 KB Output is correct
17 Correct 4 ms 1884 KB Output is correct
18 Correct 8 ms 3164 KB Output is correct
19 Correct 11 ms 1628 KB Output is correct
20 Correct 13 ms 1884 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 4 ms 856 KB Output is correct
3 Correct 5 ms 1112 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 5 ms 912 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 3 ms 860 KB Output is correct
9 Correct 6 ms 1116 KB Output is correct
10 Correct 6 ms 1116 KB Output is correct
11 Correct 6 ms 1112 KB Output is correct
12 Correct 15 ms 2140 KB Output is correct
13 Correct 11 ms 1884 KB Output is correct
14 Correct 8 ms 1624 KB Output is correct
15 Correct 9 ms 2652 KB Output is correct
16 Correct 10 ms 1628 KB Output is correct
17 Correct 4 ms 1884 KB Output is correct
18 Correct 8 ms 3164 KB Output is correct
19 Correct 11 ms 1628 KB Output is correct
20 Correct 13 ms 1884 KB Output is correct
21 Correct 50 ms 5644 KB Output is correct
22 Correct 71 ms 8784 KB Output is correct
23 Correct 106 ms 10836 KB Output is correct
24 Correct 97 ms 11380 KB Output is correct
25 Correct 32 ms 11088 KB Output is correct
26 Correct 93 ms 12612 KB Output is correct
27 Correct 116 ms 10064 KB Output is correct
28 Correct 34 ms 12708 KB Output is correct
29 Correct 35 ms 14144 KB Output is correct
30 Correct 158 ms 12204 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 4 ms 856 KB Output is correct
3 Correct 5 ms 1112 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 5 ms 912 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 3 ms 860 KB Output is correct
9 Correct 6 ms 1116 KB Output is correct
10 Correct 6 ms 1116 KB Output is correct
11 Correct 1161 ms 57468 KB Output is correct
12 Correct 3057 ms 103640 KB Output is correct
13 Correct 425 ms 126400 KB Output is correct
14 Execution timed out 4033 ms 111444 KB Time limit exceeded
15 Halted 0 ms 0 KB -