Submission #999978

# Submission time Handle Problem Language Result Execution time Memory
999978 2024-06-16T11:57:46 Z shmax Parachute rings (IOI12_rings) C++17
69 / 100
919 ms 96704 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>

#pragma GCC optimize("Ofast")
//#pragma GCC target("avx,avx2,fma")
#pragma GCC optimization ("unroll-loops")
//#pragma GCC target("avx,avx2,sse,sse2,sse3,sse4,popcnt")

using namespace std;
using namespace __gnu_pbds;
#define len(x) (int) x.size()


template<typename T>
using graph = vector<vector<T>>;


template<typename T>
using vec = vector<T>;


struct DSU {
public:
    DSU() : _n(0) {}

    explicit DSU(int n) : _n(n), parent_or_size(n, -1) {}

    int unite(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool one(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
                std::remove_if(result.begin(), result.end(),
                               [&](const std::vector<int> &v) { return v.empty(); }),
                result.end());
        return result;
    }

private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

int n;
graph<int> g;
DSU dsu;
bool is_zero = false;
vec<int> deg;
//set<pair<int, int>> deg_sorted;
int rootb3 = -1;
int cnt3 = 0;
vec<int> roots3;
vec<bool> goods3;
vec<int> neight3;
vec<int> goodneight3;
vec<DSU> dsues;
vec<DSU> neightdsues;
vec<bool> have3;
vec<bool> have;
DSU dsu2;
int cycle_sz;
int cnt_cyc = 0;
int mx1 = 0;
int mx2 = 0;
int mx1id = -1;

void Init(int32_t N_) {
    n = N_;
    have.resize(n, false);
    //    dsu = DSU(n);
    g.resize(n);
    deg.resize(n);
    have3.resize(n);
    for (int i = 0; i < n; i++) {
    }
    dsu2 = DSU(n);
}

pair<bool, DSU> create(int v) {
    DSU d = DSU(n);
    for (int i = 0; i < n; i++) {
        if (i == v) continue;
        for (auto &j: g[i]) {
            if (j == v) continue;
            if (i < j) continue;
            if (d.one(i, j)) {
                return {false, d};
            }
            d.unite(i, j);
        }
    }
    return {true, d};
}

bool add(DSU &d, int a, int b, int v) {
    if (a == v or b == v) return true;
    if (d.one(a, b)) return false;
    d.unite(a, b);
    return true;
}


void Link(int32_t a, int32_t b) {
    if (is_zero)return;
    if (rootb3 != -1) {
        if (!add(dsu, a, b, rootb3)) {
            is_zero = true;
            return;
        }
    } else {
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            goods3[i] = add(dsues[i], a, b, roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                goodneight3[i] = add(neightdsues[i], a, b, neight3[i]);
            }
    }
    g[a].push_back(b);
    g[b].push_back(a);
    deg[a]++;
    deg[b]++;
    if (mx1 < deg[a]) {
        if (mx1id != a)
            mx2 = mx1;
        mx1 = deg[a];
        mx1id = a;
    } else if (mx2 < deg[a]) {
        mx2 = deg[a];
    }
    if (mx1 < deg[b]) {
        if (mx1id != b)
            mx2 = mx1;
        mx1 = deg[b];
        mx1id = b;
    } else if (mx2 < deg[b]) {
        mx2 = deg[b];
    }
    if (mx2 > 3) {
        is_zero = true;
        return;
    }
    if (rootb3 == -1 and mx1 > 3) {
        rootb3 = mx1id;
        for (auto &i: g[rootb3]) {
            deg[i]--;
        }
        mx1 = 0;
        mx2 = 0;
        mx1id = -1;
        for (int i = 0; i < n; i++) {
            if (deg[i] > mx1) {
                mx1 = deg[i];
                mx1id = i;
            } else if (mx2 < deg[i]) {
                mx2 = deg[i];
            }
        }
        auto [f, d] = create(rootb3);
        dsu = d;
        if (!f) {
            is_zero = true;
            return;
        }
    }
    if (rootb3 == -1) {
        if (deg[a] == 3) {
            {
                cnt3++;
                roots3.push_back(a);
                auto [f, d] = create(a);
                dsues.push_back(d);
                goods3.push_back(f);
            }
        }
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        if (deg[b] == 3) {
            {
                cnt3++;
                roots3.push_back(b);
                auto [f, d] = create(b);
                dsues.push_back(d);
                goods3.push_back(f);
            }
            if (cnt3 < 3) {
                for (auto x: g[b]) {
                    if (have3[x] or deg[x] == 3) continue;
                    if (!check(x)) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (deg[a] == 3) {
            if (cnt3 < 3) {
                for (auto x: g[a]) {
                    if (have3[x] or deg[x] == 3) continue;
                    if (!check(x)) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (cnt3 > 4) {
            is_zero = true;
            return;
        }

    }
    if (roots3.empty() and rootb3 == -1) {
        if (dsu2.one(a, b)) {
            cnt_cyc++;
            cycle_sz = dsu2.size(a);
        } else {
            dsu2.unite(a, b);
        }
        if (cnt_cyc > 1) {
            is_zero = true;
        }
    }
}


int32_t CountCritical() {
    if (is_zero) return 0;
    if (n == 1) return 1;
    if (rootb3 != -1) {
        return 1;
    }
    if (!roots3.empty()) {
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        vec<int> can;
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            if (have[roots3[i]]) continue;
            if (!check(roots3[i])) continue;
            have[roots3[i]] = true;
            can.push_back(roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                if (have[neight3[i]]) continue;
                if (!check(neight3[i])) continue;
                have[roots3[i]] = true;
                can.push_back(neight3[i]);
            }
        for (auto &i: can) {
            have[i] = false;
        }
        return len(can);
    }
    if (cnt_cyc == 1)
        return cycle_sz;
    if (cnt_cyc == 0)
        return n;
}

Compilation message

rings.cpp:6: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    6 | #pragma GCC optimization ("unroll-loops")
      | 
rings.cpp: In function 'int32_t CountCritical()':
rings.cpp:314:1: warning: control reaches end of non-void function [-Wreturn-type]
  314 | }
      | ^
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 2 ms 860 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 2 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 202 ms 37412 KB Output is correct
2 Correct 511 ms 72152 KB Output is correct
3 Correct 178 ms 74364 KB Output is correct
4 Correct 595 ms 70872 KB Output is correct
5 Correct 557 ms 70316 KB Output is correct
6 Correct 519 ms 68828 KB Output is correct
7 Correct 163 ms 78016 KB Output is correct
8 Correct 814 ms 88516 KB Output is correct
9 Correct 919 ms 96704 KB Output is correct
10 Correct 349 ms 67920 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 2 ms 860 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 2 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
11 Correct 3 ms 860 KB Output is correct
12 Correct 5 ms 1532 KB Output is correct
13 Correct 4 ms 1372 KB Output is correct
14 Correct 2 ms 1116 KB Output is correct
15 Correct 2 ms 1628 KB Output is correct
16 Correct 3 ms 1004 KB Output is correct
17 Correct 2 ms 1328 KB Output is correct
18 Correct 3 ms 1824 KB Output is correct
19 Correct 3 ms 1116 KB Output is correct
20 Correct 5 ms 1244 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 2 ms 860 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 2 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
11 Correct 3 ms 860 KB Output is correct
12 Correct 5 ms 1532 KB Output is correct
13 Correct 4 ms 1372 KB Output is correct
14 Correct 2 ms 1116 KB Output is correct
15 Correct 2 ms 1628 KB Output is correct
16 Correct 3 ms 1004 KB Output is correct
17 Correct 2 ms 1328 KB Output is correct
18 Correct 3 ms 1824 KB Output is correct
19 Correct 3 ms 1116 KB Output is correct
20 Correct 5 ms 1244 KB Output is correct
21 Correct 12 ms 3420 KB Output is correct
22 Correct 19 ms 4992 KB Output is correct
23 Correct 29 ms 6380 KB Output is correct
24 Correct 22 ms 7492 KB Output is correct
25 Correct 10 ms 6640 KB Output is correct
26 Correct 23 ms 8048 KB Output is correct
27 Correct 23 ms 5980 KB Output is correct
28 Correct 17 ms 7588 KB Output is correct
29 Correct 18 ms 8264 KB Output is correct
30 Correct 29 ms 7384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 2 ms 860 KB Output is correct
3 Correct 2 ms 860 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 604 KB Output is correct
6 Correct 2 ms 604 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 860 KB Output is correct
10 Correct 2 ms 860 KB Output is correct
11 Correct 202 ms 37412 KB Output is correct
12 Correct 511 ms 72152 KB Output is correct
13 Correct 178 ms 74364 KB Output is correct
14 Correct 595 ms 70872 KB Output is correct
15 Correct 557 ms 70316 KB Output is correct
16 Correct 519 ms 68828 KB Output is correct
17 Correct 163 ms 78016 KB Output is correct
18 Correct 814 ms 88516 KB Output is correct
19 Correct 919 ms 96704 KB Output is correct
20 Correct 349 ms 67920 KB Output is correct
21 Correct 3 ms 860 KB Output is correct
22 Correct 5 ms 1532 KB Output is correct
23 Correct 4 ms 1372 KB Output is correct
24 Correct 2 ms 1116 KB Output is correct
25 Correct 2 ms 1628 KB Output is correct
26 Correct 3 ms 1004 KB Output is correct
27 Correct 2 ms 1328 KB Output is correct
28 Correct 3 ms 1824 KB Output is correct
29 Correct 3 ms 1116 KB Output is correct
30 Correct 5 ms 1244 KB Output is correct
31 Correct 12 ms 3420 KB Output is correct
32 Correct 19 ms 4992 KB Output is correct
33 Correct 29 ms 6380 KB Output is correct
34 Correct 22 ms 7492 KB Output is correct
35 Correct 10 ms 6640 KB Output is correct
36 Correct 23 ms 8048 KB Output is correct
37 Correct 23 ms 5980 KB Output is correct
38 Correct 17 ms 7588 KB Output is correct
39 Correct 18 ms 8264 KB Output is correct
40 Correct 29 ms 7384 KB Output is correct
41 Correct 113 ms 26684 KB Output is correct
42 Correct 336 ms 62904 KB Output is correct
43 Correct 136 ms 58640 KB Output is correct
44 Correct 162 ms 72212 KB Output is correct
45 Incorrect 253 ms 73232 KB Output isn't correct
46 Halted 0 ms 0 KB -