Submission #999961

# Submission time Handle Problem Language Result Execution time Memory
999961 2024-06-16T11:34:54 Z shmax Parachute rings (IOI12_rings) C++17
52 / 100
4000 ms 114368 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>

#pragma GCC optimize("Ofast")
//#pragma GCC target("avx,avx2,fma")
#pragma GCC optimization ("unroll-loops")
//#pragma GCC target("avx,avx2,sse,sse2,sse3,sse4,popcnt")

using namespace std;
using namespace __gnu_pbds;
#define len(x) (int) x.size()


template<typename T>
using graph = vector<vector<T>>;


template<typename T>
using vec = vector<T>;


struct DSU {
public:
    DSU() : _n(0) {}

    explicit DSU(int n) : _n(n), parent_or_size(n, -1) {}

    int unite(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool one(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
                std::remove_if(result.begin(), result.end(),
                               [&](const std::vector<int> &v) { return v.empty(); }),
                result.end());
        return result;
    }

private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

int n;
graph<int> g;
DSU dsu;
bool is_zero = false;
vec<int> deg;
set<pair<int, int>> deg_sorted;
int rootb3 = -1;
int cnt3 = 0;
vec<int> roots3;
vec<bool> goods3;
vec<int> neight3;
vec<int> goodneight3;
vec<DSU> dsues;
vec<DSU> neightdsues;
vec<bool> have3;
vec<bool> have;
DSU dsu2;
int cycle_sz;
int cnt_cyc = 0;

void Init(int32_t N_) {
    n = N_;
    have.resize(n, false);
//    dsu = DSU(n);
    g.resize(n);
    deg.resize(n);
    deg_sorted.clear();
    have3.resize(n);
    for (int i = 0; i < n; i++) {
        deg_sorted.insert({0, i});
    }
    dsu2 = DSU(n);
}

pair<bool, DSU> create(int v) {
    DSU d = DSU(n);
    for (int i = 0; i < n; i++) {
        if (i == v) continue;
        for (auto &j: g[i]) {
            if (j == v) continue;
            if (i < j) continue;
            if (d.one(i, j)) {
                return {false, d};
            }
            d.unite(i, j);
        }
    }
    return {true, d};
}

bool add(DSU &d, int a, int b, int v) {
    if (a == v or b == v) return true;
    if (d.one(a, b)) return false;
    d.unite(a, b);
    return true;
}

void Link(int32_t a, int32_t b) {
    if (is_zero)return;
    if (rootb3 != -1) {
        if (!add(dsu, a, b, rootb3)) {
            is_zero = true;
            return;
        }
    } else {
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            goods3[i] = add(dsues[i], a, b, roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                goodneight3[i] = add(neightdsues[i], a, b, neight3[i]);
            }
    }
    deg_sorted.erase({deg[a], a});
    deg_sorted.erase({deg[b], b});
    g[a].push_back(b);
    g[b].push_back(a);
    deg[a]++;
    deg[b]++;
    deg_sorted.insert({deg[a], a});
    deg_sorted.insert({deg[b], b});
    if (n != 1 and deg_sorted.rbegin()->first > 3 and prev(prev(deg_sorted.end()))->first > 3) {
        is_zero = true;
    }
    if (rootb3 == -1 and deg_sorted.rbegin()->first > 3) {
        rootb3 = deg_sorted.rbegin()->second;
        for (auto &i: g[rootb3]) {
            deg_sorted.erase({deg[i], i});
            deg[i]--;
            deg_sorted.insert({deg[i], i});
        }
        if (n != 1 and prev(prev(deg_sorted.end()))->first > 2)
            is_zero = true;
        auto [f, d] = create(rootb3);
        dsu = d;
        if (!f) {
            is_zero = true;
            return;
        }
    }
    if (rootb3 == -1) {
        if (deg[a] == 3) {
            {
                cnt3++;
                roots3.push_back(a);
                auto [f, d] = create(a);
                dsues.push_back(d);
                goods3.push_back(f);
            }
        }
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        if (deg[b] == 3) {
            {
                cnt3++;
                roots3.push_back(b);
                auto [f, d] = create(b);
                dsues.push_back(d);
                goods3.push_back(f);
            }
            if (cnt3 < 3) {
                for (auto x: g[b]) {
                    if (have3[x] or deg[x] == 3) continue;
                    if (!check(x)) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (deg[a] == 3) {
            if (cnt3 < 3) {
                for (auto x: g[a]) {
                    if (have3[x] or deg[x] == 3) continue;
                    if (!check(x)) continue;
                    have3[x] = true;
                    neight3.push_back(x);
                    auto [f, d] = create(x);
                    neightdsues.push_back(d);
                    goodneight3.push_back(f);
                }
            }
        }
        if (cnt3 > 4) {
            is_zero = true;
            return;
        }

    }
    if (roots3.empty() and rootb3 == -1) {
        if (dsu2.one(a, b)) {
            cnt_cyc++;
            cycle_sz = dsu2.size(a);
        } else {
            dsu2.unite(a, b);
        }
        if (cnt_cyc > 1) {
            is_zero = true;
        }
    }
}


int32_t CountCritical() {
    if (is_zero) return 0;
    if (n == 1) return 1;
    if (rootb3 != -1) {
        return 1;
    }
    if (!roots3.empty()) {
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        vec<int> can;
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            if (have[roots3[i]]) continue;
            if (!check(roots3[i])) continue;
            have[roots3[i]] = true;
            can.push_back(roots3[i]);
        }
        if (cnt3 < 3)
            for (int i = 0; i < len(neight3); i++) {
                if (!goodneight3[i]) continue;
                if (have[neight3[i]]) continue;
                if (!check(neight3[i])) continue;
                have[roots3[i]] = true;
                can.push_back(neight3[i]);
            }
        for (auto &i: can) {
            have[i] = false;
        }
        return len(can);
    }
    if (cnt_cyc == 1)
        return cycle_sz;
    if (cnt_cyc == 0)
        return n;
}

Compilation message

rings.cpp:6: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    6 | #pragma GCC optimization ("unroll-loops")
      | 
rings.cpp: In function 'int32_t CountCritical()':
rings.cpp:292:1: warning: control reaches end of non-void function [-Wreturn-type]
  292 | }
      | ^
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 4 ms 860 KB Output is correct
3 Correct 5 ms 1112 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 5 ms 860 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 4 ms 860 KB Output is correct
9 Correct 6 ms 1116 KB Output is correct
10 Correct 6 ms 1116 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1373 ms 57472 KB Output is correct
2 Correct 3311 ms 103736 KB Output is correct
3 Correct 406 ms 114368 KB Output is correct
4 Execution timed out 4048 ms 109904 KB Time limit exceeded
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 4 ms 860 KB Output is correct
3 Correct 5 ms 1112 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 5 ms 860 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 4 ms 860 KB Output is correct
9 Correct 6 ms 1116 KB Output is correct
10 Correct 6 ms 1116 KB Output is correct
11 Correct 5 ms 1112 KB Output is correct
12 Correct 11 ms 1880 KB Output is correct
13 Correct 12 ms 1884 KB Output is correct
14 Correct 7 ms 1628 KB Output is correct
15 Correct 8 ms 2396 KB Output is correct
16 Correct 8 ms 1532 KB Output is correct
17 Correct 3 ms 1628 KB Output is correct
18 Correct 6 ms 2652 KB Output is correct
19 Correct 11 ms 1500 KB Output is correct
20 Correct 13 ms 1624 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 4 ms 860 KB Output is correct
3 Correct 5 ms 1112 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 5 ms 860 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 4 ms 860 KB Output is correct
9 Correct 6 ms 1116 KB Output is correct
10 Correct 6 ms 1116 KB Output is correct
11 Correct 5 ms 1112 KB Output is correct
12 Correct 11 ms 1880 KB Output is correct
13 Correct 12 ms 1884 KB Output is correct
14 Correct 7 ms 1628 KB Output is correct
15 Correct 8 ms 2396 KB Output is correct
16 Correct 8 ms 1532 KB Output is correct
17 Correct 3 ms 1628 KB Output is correct
18 Correct 6 ms 2652 KB Output is correct
19 Correct 11 ms 1500 KB Output is correct
20 Correct 13 ms 1624 KB Output is correct
21 Correct 41 ms 5204 KB Output is correct
22 Correct 69 ms 8168 KB Output is correct
23 Correct 95 ms 10324 KB Output is correct
24 Correct 99 ms 10996 KB Output is correct
25 Correct 32 ms 11088 KB Output is correct
26 Correct 94 ms 11880 KB Output is correct
27 Correct 105 ms 9552 KB Output is correct
28 Correct 31 ms 10904 KB Output is correct
29 Correct 47 ms 12512 KB Output is correct
30 Correct 163 ms 11084 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 4 ms 860 KB Output is correct
3 Correct 5 ms 1112 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 5 ms 860 KB Output is correct
7 Correct 1 ms 860 KB Output is correct
8 Correct 4 ms 860 KB Output is correct
9 Correct 6 ms 1116 KB Output is correct
10 Correct 6 ms 1116 KB Output is correct
11 Correct 1373 ms 57472 KB Output is correct
12 Correct 3311 ms 103736 KB Output is correct
13 Correct 406 ms 114368 KB Output is correct
14 Execution timed out 4048 ms 109904 KB Time limit exceeded
15 Halted 0 ms 0 KB -