Submission #999951

# Submission time Handle Problem Language Result Execution time Memory
999951 2024-06-16T11:04:48 Z shmax Parachute rings (IOI12_rings) C++17
52 / 100
4000 ms 137924 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>

#pragma GCC optimize("O3")
#pragma GCC target("avx,avx2,fma")
#pragma GCC optimization ("unroll-loops")
#pragma GCC target("avx,avx2,sse,sse2,sse3,sse4,popcnt")

using namespace std;
using namespace __gnu_pbds;
//#define int long long
#define float long double
#define elif else if
#define endl "\n"
#define mod 1000000007
#define pi acos(-1)
#define eps 0.000000001
#define inf 1000'000'000'000'000'000LL
#define FIXED(a) cout << fixed << setprecision(a)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define time_init auto start = std::chrono::high_resolution_clock::now()
#define time_report                                       \
    auto end = std::chrono::high_resolution_clock::now(); \
    std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << " ms" << endl
#define debug(x) \
    { cerr << #x << " = " << x << endl; }
#define len(x) (int) x.size()
#define sqr(x) ((x) * (x))
#define cube(x) ((x) * (x) * (x))
#define bit(x, i) (((x) >> (i)) & 1)
#define set_bit(x, i) ((x) | (1LL << (i)))
#define clear_bit(x, i) ((x) & (~(1LL << (i))))
#define toggle_bit(x, i) ((x) ^ (1LL << (i)))
#define low_bit(x) ((x) & (-(x)))
#define count_bit(x) __builtin_popcountll(x)
#define srt(x) sort(all(x))
#define rsrt(x) sort(rall(x))
#define mp make_pair
#define maxel(x) (*max_element(all(x)))
#define minel(x) (*min_element(all(x)))
#define maxelpos(x) (max_element(all(x)) - x.begin())
#define minelpos(x) (min_element(all(x)) - x.begin())
#define sum(x) (accumulate(all(x), 0LL))
#define product(x) (accumulate(all(x), 1LL, multiplies<int>()))
#define gcd __gcd
#define lcm(a, b) ((a) / gcd(a, b) * (b))
#define rev(x) (reverse(all(x)))
#define shift_left(x, k) (rotate(x.begin(), x.begin() + k, x.end()))
#define shift_right(x, k) (rotate(x.rbegin(), x.rbegin() + k, x.rend()))
#define is_sorted(x) (is_sorted_until(all(x)) == x.end())
#define is_even(x) (((x) &1) == 0)
#define is_odd(x) (((x) &1) == 1)
#define pow2(x) (1LL << (x))

struct custom_hash {
    static uint64_t splitmix64(uint64_t x) {
        // http://xorshift.di.unimi.it/splitmix64.c
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^ (x >> 31);
    }

    size_t operator()(uint64_t x) const {
        static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
        return splitmix64(x + FIXED_RANDOM);
    }
};

template<typename T>
using min_heap = priority_queue<T, vector<T>, greater<T>>;
template<typename T>
using max_heap = priority_queue<T, vector<T>, less<T>>;
template<typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T>
using ordered_multiset = tree<T, null_type, less_equal<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T>
using matrix = vector<vector<T>>;
template<typename T>
using graph = vector<vector<T>>;
using hashmap = gp_hash_table<int, int, custom_hash>;

template<typename T>
vector<T> vect(int n, T val) {
    return vector<T>(n, val);
}

template<typename T>
vector<vector<T>> vect(int n, int m, T val) {
    return vector<vector<T>>(n, vector<T>(m, val));
}

template<typename T>
vector<vector<vector<T>>> vect(int n, int m, int k, T val) {
    return vector<vector<vector<T>>>(n, vector<vector<T>>(m, vector<T>(k, val)));
}

template<typename T>
vector<vector<vector<vector<T>>>> vect(int n, int m, int k, int l, T val) {
    return vector<vector<vector<vector<T>>>>(n, vector<vector<vector<T>>>(m, vector<vector<T>>(k, vector<T>(l, val))));
}

template<typename T>
matrix<T> new_matrix(int n, int m, T val) {
    return matrix<T>(n, vector<T>(m, val));
}

template<typename T>
graph<T> new_graph(int n) {
    return graph<T>(n);
}

template<class T, class S>
inline bool chmax(T &a, const S &b) {
    return (a < b ? a = b, 1 : 0);
}

template<class T, class S>
inline bool chmin(T &a, const S &b) {
    return (a > b ? a = b, 1 : 0);
}

using i8 = int8_t;
using i16 = int16_t;
using i32 = int32_t;
using i64 = int64_t;
using i128 = __int128_t;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using u128 = __uint128_t;

template<typename T>
using vec = vector<T>;

using pII = pair<int, int>;
template<typename T>
using enumerated = pair<T, int>;

struct DSU {
public:
    DSU() : _n(0) {}

    explicit DSU(int n) : _n(n), parent_or_size(n, -1) {}

    int unite(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool one(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
                std::remove_if(result.begin(), result.end(),
                               [&](const std::vector<int> &v) { return v.empty(); }),
                result.end());
        return result;
    }

private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

int n;
graph<int> g;
DSU dsu;
bool is_zero = false;
vec<int> deg;
set<pair<int, int>> deg_sorted;
int rootb3 = -1;
int cnt3 = 0;
vec<int> roots3;
vec<bool> goods3;
vec<DSU> dsues;
vec<bool> have3;

DSU dsu2;
int cycle_sz;
int cnt_cyc = 0;

void Init(i32 N_) {
    n = N_;
//    dsu = DSU(n);
    g.resize(n);
    deg.resize(n);
    deg_sorted.clear();
    have3.resize(n);
    for (int i = 0; i < n; i++) {
        deg_sorted.insert({0, i});
    }
    dsu2 = DSU(n);
}

pair<bool, DSU> create(int v) {
    DSU d = DSU(n);
    for (int i = 0; i < n; i++) {
        if (i == v) continue;
        for (auto &j: g[i]) {
            if (j == v) continue;
            if (i < j) continue;
            if (d.one(i, j)) {
                return {false, d};
            }
            d.unite(i, j);
        }
    }
    return {true, d};
}

bool add(DSU &d, int a, int b, int v) {
    if (a == v or b == v) return true;
    if (d.one(a, b)) return false;
    d.unite(a, b);
    return true;
}

void Link(i32 a, i32 b) {
    if (is_zero)return;
    if (rootb3 != -1) {
        if (!add(dsu, a, b, rootb3)) {
            is_zero = true;
            return;
        }
    } else {
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            goods3[i] = add(dsues[i], a, b, roots3[i]);
        }
    }
    deg_sorted.erase({deg[a], a});
    deg_sorted.erase({deg[b], b});
    g[a].push_back(b);
    g[b].push_back(a);
    deg[a]++;
    deg[b]++;
    deg_sorted.insert({deg[a], a});
    deg_sorted.insert({deg[b], b});
    if (n != 1 and deg_sorted.rbegin()->first > 3 and prev(prev(deg_sorted.end()))->first > 3) {
        is_zero = true;
    }
    if (rootb3 == -1 and deg_sorted.rbegin()->first > 3) {
        rootb3 = deg_sorted.rbegin()->second;
        for (auto &i: g[rootb3]) {
            deg_sorted.erase({deg[i], i});
            deg[i]--;
            deg_sorted.insert({deg[i], i});
        }
        if (n != 1 and prev(prev(deg_sorted.end()))->first > 2)
            is_zero = true;
        auto [f, d] = create(rootb3);
        dsu = d;
        if (!f) {
            is_zero = true;
            return;
        }
    }
    if (rootb3 == -1) {
        if (deg[a] == 3) {
            {
                have3[a] = true;
                cnt3++;
                roots3.push_back(a);
                auto [f, d] = create(a);
                dsues.push_back(d);
                goods3.push_back(f);
            }
            for (auto x: g[a]) {
                if (have3[x]) continue;
                have3[x] = true;
                roots3.push_back(x);
                auto [f, d] = create(x);
                dsues.push_back(d);
                goods3.push_back(f);
            }
        }
        if (deg[b] == 3) {
            {
                have3[b] = true;
                cnt3++;
                roots3.push_back(b);
                auto [f, d] = create(b);
                dsues.push_back(d);
                goods3.push_back(f);
            }
            for (auto x: g[b]) {
                if (have3[x]) continue;
                have3[x] = true;
                roots3.push_back(x);
                auto [f, d] = create(x);
                dsues.push_back(d);
                goods3.push_back(f);
            }
        }

        if (cnt3 > 4) {
            is_zero = true;
            return;
        }

    }
    if (roots3.empty() and rootb3 == -1) {
        if (dsu2.one(a, b)) {
            cnt_cyc++;
            cycle_sz = dsu2.size(a);
        } else {
            dsu2.unite(a, b);
        }
        if (cnt_cyc > 1){
            is_zero = true;
        }
    }
}


i32 CountCritical() {
    if (is_zero) return 0;
    if (n == 1) return 1;
    if (rootb3 != -1) {
        return 1;
    }
    if (!roots3.empty()) {
        auto check = [&](int v) {
            int t = 0;
            for (auto u: g[v])
                t += (deg[u] == 3);
            return t + (deg[v] == 3) == cnt3;
        };
        set<int> can;
        for (int i = 0; i < len(roots3); i++) {
            if (!goods3[i]) continue;
            if (!check(roots3[i])) continue;
            can.insert(roots3[i]);
        }

        return len(can);
    }
    int ans = 0;
    if(cnt_cyc == 1) {
        return cycle_sz;
    }
    if(cnt_cyc == 0) {
        return n;
    }
}

Compilation message

rings.cpp:6: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    6 | #pragma GCC optimization ("unroll-loops")
      | 
rings.cpp: In function 'i32 CountCritical()':
rings.cpp:377:9: warning: unused variable 'ans' [-Wunused-variable]
  377 |     int ans = 0;
      |         ^~~
rings.cpp:384:1: warning: control reaches end of non-void function [-Wreturn-type]
  384 | }
      | ^
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 4 ms 856 KB Output is correct
3 Correct 5 ms 1116 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 5 ms 856 KB Output is correct
7 Correct 2 ms 1116 KB Output is correct
8 Correct 3 ms 896 KB Output is correct
9 Correct 5 ms 1144 KB Output is correct
10 Correct 6 ms 1112 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1319 ms 57428 KB Output is correct
2 Correct 3322 ms 103728 KB Output is correct
3 Correct 405 ms 137924 KB Output is correct
4 Execution timed out 4062 ms 110932 KB Time limit exceeded
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 4 ms 856 KB Output is correct
3 Correct 5 ms 1116 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 5 ms 856 KB Output is correct
7 Correct 2 ms 1116 KB Output is correct
8 Correct 3 ms 896 KB Output is correct
9 Correct 5 ms 1144 KB Output is correct
10 Correct 6 ms 1112 KB Output is correct
11 Correct 6 ms 1112 KB Output is correct
12 Correct 13 ms 2396 KB Output is correct
13 Correct 12 ms 1884 KB Output is correct
14 Correct 8 ms 1408 KB Output is correct
15 Correct 9 ms 2392 KB Output is correct
16 Correct 9 ms 1372 KB Output is correct
17 Correct 4 ms 1908 KB Output is correct
18 Correct 7 ms 3672 KB Output is correct
19 Correct 11 ms 1372 KB Output is correct
20 Correct 13 ms 1884 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 4 ms 856 KB Output is correct
3 Correct 5 ms 1116 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 5 ms 856 KB Output is correct
7 Correct 2 ms 1116 KB Output is correct
8 Correct 3 ms 896 KB Output is correct
9 Correct 5 ms 1144 KB Output is correct
10 Correct 6 ms 1112 KB Output is correct
11 Correct 6 ms 1112 KB Output is correct
12 Correct 13 ms 2396 KB Output is correct
13 Correct 12 ms 1884 KB Output is correct
14 Correct 8 ms 1408 KB Output is correct
15 Correct 9 ms 2392 KB Output is correct
16 Correct 9 ms 1372 KB Output is correct
17 Correct 4 ms 1908 KB Output is correct
18 Correct 7 ms 3672 KB Output is correct
19 Correct 11 ms 1372 KB Output is correct
20 Correct 13 ms 1884 KB Output is correct
21 Correct 39 ms 5196 KB Output is correct
22 Correct 68 ms 8148 KB Output is correct
23 Correct 94 ms 10320 KB Output is correct
24 Correct 92 ms 11048 KB Output is correct
25 Correct 29 ms 11060 KB Output is correct
26 Correct 94 ms 11876 KB Output is correct
27 Correct 104 ms 9132 KB Output is correct
28 Correct 36 ms 15100 KB Output is correct
29 Correct 48 ms 17100 KB Output is correct
30 Correct 159 ms 11088 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 4 ms 856 KB Output is correct
3 Correct 5 ms 1116 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 3 ms 604 KB Output is correct
6 Correct 5 ms 856 KB Output is correct
7 Correct 2 ms 1116 KB Output is correct
8 Correct 3 ms 896 KB Output is correct
9 Correct 5 ms 1144 KB Output is correct
10 Correct 6 ms 1112 KB Output is correct
11 Correct 1319 ms 57428 KB Output is correct
12 Correct 3322 ms 103728 KB Output is correct
13 Correct 405 ms 137924 KB Output is correct
14 Execution timed out 4062 ms 110932 KB Time limit exceeded
15 Halted 0 ms 0 KB -