Submission #999923

# Submission time Handle Problem Language Result Execution time Memory
999923 2024-06-16T10:10:49 Z shmax Parachute rings (IOI12_rings) C++17
55 / 100
4000 ms 84116 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>

//#pragma GCC optimize("O3")
//#pragma GCC target("avx,avx2,fma")
//#pragma GCC optimization ("unroll-loops")
//#pragma GCC target("avx,avx2,sse,sse2,sse3,sse4,popcnt")

using namespace std;
using namespace __gnu_pbds;
#define int long long
#define float long double
#define elif else if
#define endl "\n"
#define mod 1000000007
#define pi acos(-1)
#define eps 0.000000001
#define inf 1000'000'000'000'000'000LL
#define FIXED(a) cout << fixed << setprecision(a)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define time_init auto start = std::chrono::high_resolution_clock::now()
#define time_report                                       \
    auto end = std::chrono::high_resolution_clock::now(); \
    std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << " ms" << endl
#define debug(x) \
    { cerr << #x << " = " << x << endl; }
#define len(x) (int) x.size()
#define sqr(x) ((x) * (x))
#define cube(x) ((x) * (x) * (x))
#define bit(x, i) (((x) >> (i)) & 1)
#define set_bit(x, i) ((x) | (1LL << (i)))
#define clear_bit(x, i) ((x) & (~(1LL << (i))))
#define toggle_bit(x, i) ((x) ^ (1LL << (i)))
#define low_bit(x) ((x) & (-(x)))
#define count_bit(x) __builtin_popcountll(x)
#define srt(x) sort(all(x))
#define rsrt(x) sort(rall(x))
#define mp make_pair
#define maxel(x) (*max_element(all(x)))
#define minel(x) (*min_element(all(x)))
#define maxelpos(x) (max_element(all(x)) - x.begin())
#define minelpos(x) (min_element(all(x)) - x.begin())
#define sum(x) (accumulate(all(x), 0LL))
#define product(x) (accumulate(all(x), 1LL, multiplies<int>()))
#define gcd __gcd
#define lcm(a, b) ((a) / gcd(a, b) * (b))
#define rev(x) (reverse(all(x)))
#define shift_left(x, k) (rotate(x.begin(), x.begin() + k, x.end()))
#define shift_right(x, k) (rotate(x.rbegin(), x.rbegin() + k, x.rend()))
#define is_sorted(x) (is_sorted_until(all(x)) == x.end())
#define is_even(x) (((x) &1) == 0)
#define is_odd(x) (((x) &1) == 1)
#define pow2(x) (1LL << (x))

struct custom_hash {
    static uint64_t splitmix64(uint64_t x) {
        // http://xorshift.di.unimi.it/splitmix64.c
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^ (x >> 31);
    }

    size_t operator()(uint64_t x) const {
        static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
        return splitmix64(x + FIXED_RANDOM);
    }
};

template<typename T>
using min_heap = priority_queue<T, vector<T>, greater<T>>;
template<typename T>
using max_heap = priority_queue<T, vector<T>, less<T>>;
template<typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T>
using ordered_multiset = tree<T, null_type, less_equal<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T>
using matrix = vector<vector<T>>;
template<typename T>
using graph = vector<vector<T>>;
using hashmap = gp_hash_table<int, int, custom_hash>;

template<typename T>
vector<T> vect(int n, T val) {
    return vector<T>(n, val);
}

template<typename T>
vector<vector<T>> vect(int n, int m, T val) {
    return vector<vector<T>>(n, vector<T>(m, val));
}

template<typename T>
vector<vector<vector<T>>> vect(int n, int m, int k, T val) {
    return vector<vector<vector<T>>>(n, vector<vector<T>>(m, vector<T>(k, val)));
}

template<typename T>
vector<vector<vector<vector<T>>>> vect(int n, int m, int k, int l, T val) {
    return vector<vector<vector<vector<T>>>>(n, vector<vector<vector<T>>>(m, vector<vector<T>>(k, vector<T>(l, val))));
}

template<typename T>
matrix<T> new_matrix(int n, int m, T val) {
    return matrix<T>(n, vector<T>(m, val));
}

template<typename T>
graph<T> new_graph(int n) {
    return graph<T>(n);
}

template<class T, class S>
inline bool chmax(T &a, const S &b) {
    return (a < b ? a = b, 1 : 0);
}

template<class T, class S>
inline bool chmin(T &a, const S &b) {
    return (a > b ? a = b, 1 : 0);
}

using i8 = int8_t;
using i16 = int16_t;
using i32 = int32_t;
using i64 = int64_t;
using i128 = __int128_t;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using u128 = __uint128_t;

template<typename T>
using vec = vector<T>;

using pII = pair<int, int>;
template<typename T>
using enumerated = pair<T, int>;
int n;
graph<int> g;

void Init(i32 N_) {
    n = N_;
    g.resize(n);
}

void Link(i32 a, i32 b) {
    g[a].push_back(b);
    g[b].push_back(a);
}

struct DSU {
public:
    DSU() : _n(0) {}

    explicit DSU(int n) : _n(n), parent_or_size(n, -1) {}

    int unite(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool one(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
                std::remove_if(result.begin(), result.end(),
                               [&](const std::vector<int> &v) { return v.empty(); }),
                result.end());
        return result;
    }

private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

i32 CountCritical() {
    int ans = 0;
    vec<int> deg(n);
    for (int i = 0; i < n; i++) {
        deg[i] = len(g[i]);
    }

    int mx = maxel(deg);
    if (mx > 3) {
        int cnt = 0;
        for (int i = 0; i < n; i++) {
            cnt += deg[i] == mx;
        }
        if (cnt > 1) return 0;
        for (int i = 0; i < n; i++) {
            if (deg[i] == mx) {
                for (auto &j: g[i]) {
                    deg[j]--;
                }
                deg[i] = 0;
                bool good = maxel(deg) < 3;
                DSU dsu(n);
                for (int j = 0; j < n; j++) {
                    if (i == j) continue;
                    for (auto &k: g[j]) {
                        if (i == k) continue;
                        if (j > k) continue;
                        good = good and !dsu.one(j, k);
                        dsu.unite(j, k);
                    }
                }
                ans += good;
            }
        }
        return ans;
    }
    int cnt3 = 0;
    for (int i = 0; i < n; i++) {
        cnt3 += deg[i] == 3;
    }
    if (cnt3 > 4) return 0;
    if (cnt3 > 0) {
        for (int i = 0; i < n; i++) {
            int k3 = cnt3;
            for (auto &j: g[i]) {
                k3 -= deg[j] == 3;
                deg[j]--;
            }
            if (deg[i] == 3)k3--;
            if (k3 != 0) {
                for (auto &j: g[i]) {
                    deg[j]++;
                }
                continue;
            }

            bool good = true;
//        ans += maxel(cd) < 3;
            DSU dsu(n);
            for (int j = 0; j < n; j++) {
                if (i == j) continue;
                for (auto &k: g[j]) {
                    if (i == k) continue;
                    if (j > k) continue;
                    good = good and !dsu.one(j, k);
                    dsu.unite(j, k);
                }
            }

            ans += good;
            for (auto &j: g[i]) {
                deg[j]++;
            }
        }
    } else {
        DSU dsu(n);
        int cnt_cyc = 0;
        int tf = 0;
        for (int i = 0; i < n; i++) {
            for (auto &j: g[i]) {
                if (i > j) continue;
                if (dsu.one(i, j))cnt_cyc++, tf = dsu.size(i);
                dsu.unite(i, j);
            }
        }
        if (cnt_cyc > 1) {
            return 0;
        } elif (cnt_cyc == 1) {
            ans = tf;
        } else ans = n;
    }
    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 2 ms 872 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 640 KB Output is correct
6 Correct 2 ms 860 KB Output is correct
7 Correct 0 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 856 KB Output is correct
10 Correct 2 ms 740 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 215 ms 36944 KB Output is correct
2 Correct 391 ms 56660 KB Output is correct
3 Correct 438 ms 77380 KB Output is correct
4 Correct 522 ms 84116 KB Output is correct
5 Correct 543 ms 84068 KB Output is correct
6 Correct 514 ms 82480 KB Output is correct
7 Correct 464 ms 83684 KB Output is correct
8 Correct 526 ms 78808 KB Output is correct
9 Correct 466 ms 84048 KB Output is correct
10 Correct 339 ms 81748 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 2 ms 872 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 640 KB Output is correct
6 Correct 2 ms 860 KB Output is correct
7 Correct 0 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 856 KB Output is correct
10 Correct 2 ms 740 KB Output is correct
11 Correct 10 ms 856 KB Output is correct
12 Correct 25 ms 1236 KB Output is correct
13 Correct 35 ms 1232 KB Output is correct
14 Correct 14 ms 1172 KB Output is correct
15 Correct 24 ms 1828 KB Output is correct
16 Correct 27 ms 1308 KB Output is correct
17 Correct 5 ms 1000 KB Output is correct
18 Correct 12 ms 1692 KB Output is correct
19 Correct 21 ms 1296 KB Output is correct
20 Correct 30 ms 1268 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 2 ms 872 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 640 KB Output is correct
6 Correct 2 ms 860 KB Output is correct
7 Correct 0 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 856 KB Output is correct
10 Correct 2 ms 740 KB Output is correct
11 Correct 10 ms 856 KB Output is correct
12 Correct 25 ms 1236 KB Output is correct
13 Correct 35 ms 1232 KB Output is correct
14 Correct 14 ms 1172 KB Output is correct
15 Correct 24 ms 1828 KB Output is correct
16 Correct 27 ms 1308 KB Output is correct
17 Correct 5 ms 1000 KB Output is correct
18 Correct 12 ms 1692 KB Output is correct
19 Correct 21 ms 1296 KB Output is correct
20 Correct 30 ms 1268 KB Output is correct
21 Execution timed out 4025 ms 3008 KB Time limit exceeded
22 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 1 ms 604 KB Output is correct
3 Correct 2 ms 872 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 640 KB Output is correct
6 Correct 2 ms 860 KB Output is correct
7 Correct 0 ms 604 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 2 ms 856 KB Output is correct
10 Correct 2 ms 740 KB Output is correct
11 Correct 215 ms 36944 KB Output is correct
12 Correct 391 ms 56660 KB Output is correct
13 Correct 438 ms 77380 KB Output is correct
14 Correct 522 ms 84116 KB Output is correct
15 Correct 543 ms 84068 KB Output is correct
16 Correct 514 ms 82480 KB Output is correct
17 Correct 464 ms 83684 KB Output is correct
18 Correct 526 ms 78808 KB Output is correct
19 Correct 466 ms 84048 KB Output is correct
20 Correct 339 ms 81748 KB Output is correct
21 Correct 10 ms 856 KB Output is correct
22 Correct 25 ms 1236 KB Output is correct
23 Correct 35 ms 1232 KB Output is correct
24 Correct 14 ms 1172 KB Output is correct
25 Correct 24 ms 1828 KB Output is correct
26 Correct 27 ms 1308 KB Output is correct
27 Correct 5 ms 1000 KB Output is correct
28 Correct 12 ms 1692 KB Output is correct
29 Correct 21 ms 1296 KB Output is correct
30 Correct 30 ms 1268 KB Output is correct
31 Execution timed out 4025 ms 3008 KB Time limit exceeded
32 Halted 0 ms 0 KB -