Submission #998930

#TimeUsernameProblemLanguageResultExecution timeMemory
998930crimson231색종이 (kriii3_T)C++17
109 / 109
68 ms1616 KiB
#include <iostream> #include <algorithm> #include <cmath> #include <cstring> #include <cassert> #include <vector> typedef long long ll; typedef long double ld; typedef std::vector<ld> vld; const ld INF = 1e17; const ld TOL = 1e-13; const ld PI = acosl(-1); const int LEN = 205; inline int sign(const ld& x) { return x < -TOL ? -1 : x > TOL; } inline bool zero(const ld& x) { return !sign(x); } inline ll sq(int x) { return (ll)x * x; } inline ld norm(ld th) { while (th < 0) th += 2 * PI; while (sign(th - 2 * PI) >= 0) th -= 2 * PI; return th; } enum Geo { TRI, CIR, }; int N; ld A[LEN][LEN]; struct Pos { ld x, y; inline Pos(ld x = 0, ld y = 0) : x(x), y(y) {} inline bool operator == (const Pos& p) const { return zero(x - p.x) && zero(y - p.y); } inline Pos operator + (const Pos& p) const { return { x + p.x, y + p.y }; } inline Pos operator - (const Pos& p) const { return { x - p.x, y - p.y }; } inline Pos operator * (const ld& s) const { return { x * s, y * s }; } inline ld operator * (const Pos& p) const { return x * p.x + y * p.y; } inline ld operator / (const Pos& p) const { return x * p.y - y * p.x; } inline Pos operator - () const { return { -x, -y }; } inline Pos operator ~ () const { return { -y, x }; } inline ld Euc() const { return x * x + y * y; } inline ld mag() const { return sqrt(Euc()); } inline ld rad() const { return norm(atan2(y, x)); } inline friend std::istream& operator >> (std::istream& is, Pos& p) { is >> p.x >> p.y; return is; } inline friend std::ostream& operator << (std::ostream& os, const Pos& p) { os << p.x << " " << p.y; return os; } }; struct Seg { Pos s, e; inline Seg(Pos S = Pos(), Pos E = Pos()) : s(S), e(E) {} inline ld green(const Pos& m, const ld& v) const { return m.y * v * (s.x - e.x); } }; struct Triangle { Pos a, b, c; inline Triangle(Pos p = Pos(), Pos q = Pos(), Pos r = Pos()) { if ((q - p) / (r - q) < 0) std::swap(q, r); a = p; b = q; c = r; } inline int inner_check(const Pos& p, const Pos& v) const { ld f1 = (b - a) / (p - a); ld f2 = (c - b) / (p - b); ld f3 = (a - c) / (p - c); if (sign(f1) < 0 || sign(f2) < 0 || sign(f3) < 0) return 0; if (zero(f1)) return (b - a) / v > 0 ? 2 : 0;//on_seg && centripetal if (zero(f2)) return (c - b) / v > 0 ? 2 : 0; if (zero(f3)) return (a - c) / v > 0 ? 2 : 0; return 1; } }; struct Circle { Pos c; int r; inline Circle(Pos C = Pos(), int R = 0) : c(C), r(R) {} inline bool operator == (const Circle& C) const { return c == C.c && r == C.r; } inline bool operator >= (const Pos& p) const { return sign(r * r - (c - p).Euc()) >= 0; } inline ld area(const ld& lo, const ld& hi) const { return (hi - lo) * r * r * .5; } inline ld rad(const Pos& p) const { return (p - c).rad(); } inline ld green(const ld& lo, const ld& hi) const { Pos s = Pos(cos(lo), sin(lo)), e = Pos(cos(hi), sin(hi)); ld fan = area(lo, hi); Pos m = c + (s + e) * r * (ld).5; ld I = (cos(lo) - cos(hi)) * m.y * r; return fan + I - (s / e) * r * r * (ld).5; } }; struct Shape { Geo type; Triangle T; Circle C; inline Shape(int t = 0, int a = 0, int b = 0, int c = 0, int d = 0, int e = 0, int f = 0) { type = (Geo)t; if (type == TRI) T = Triangle(Pos(a, b), Pos(c, d), Pos(e, f)); else if (type == CIR) C = Circle(Pos(a, b), c); } } C[LEN]; inline ld intersection(const Seg& s1, const Seg& s2) { const Pos& p1 = s1.s, p2 = s1.e, q1 = s2.s, q2 = s2.e; ld det = (q2 - q1) / (p2 - p1); if (zero(det)) return -1; ld a1 = ((q2 - q1) / (q1 - p1)) / det; ld a2 = ((p2 - p1) / (p1 - q1)) / -det; if (0 < a1 && a1 < 1 && -TOL < a2 && a2 < 1 + TOL) return a1; return -1; } inline vld circle_line_intersections(const Pos& s, const Pos& e, const Circle& q, const bool& f = 0) { //https://math.stackexchange.com/questions/311921/get-location-of-vector-circle-intersection Pos vec = e - s; Pos OM = s - q.c; ld a = vec.Euc(); ld b = vec * OM; ld c = OM.Euc() - q.r * q.r; ld J = b * b - a * c; if (J < -TOL) return {}; ld det = sqrt(std::max((ld)0, J)); ld lo = (-b - det) / a; ld hi = (-b + det) / a; vld ret; if (f) { if (0 < hi && hi < 1) ret.push_back(hi); if (zero(det)) return ret; if (0 < lo && lo < 1) ret.push_back(lo); } else { auto the = [&](ld rt) { return q.rad(s + (e - s) * rt); }; if (-TOL < hi && hi < 1 + TOL) ret.push_back(the(hi)); if (zero(det)) return ret; if (-TOL < lo && lo < 1 + TOL) ret.push_back(the(lo)); } return ret; } inline vld intersection(const Circle& a, const Circle& b) { Pos ca = a.c, cb = b.c; Pos vec = cb - ca; ll ra = a.r, rb = b.r; ld distance = vec.mag(); ld rd = vec.rad(); if (vec.Euc() > sq(ra + rb) + TOL) return {}; if (vec.Euc() < sq(ra - rb) - TOL) return {}; ld X = (ra * ra - rb * rb + vec.Euc()) / (2 * distance * ra); if (X < -1) X = -1; if (X > 1) X = 1; ld h = acos(X); vld ret = {}; ret.push_back(norm(rd + h)); if (zero(h)) return ret; ret.push_back(norm(rd - h)); return ret; } inline void green_seg(const Seg& S, const int& I) {//refer to cki86201 if (!sign(S.s.x - S.e.x)) return; vld VA = { 0, 1 }; for (int j = 0; j < N; j++) { if (I == j) continue; if (C[j].type == TRI) { Pos* tri[] = { &C[j].T.a, &C[j].T.b, &C[j].T.c }; for (int k = 0; k < 3; k++) { const Pos& q1 = *tri[k], & q2 = *tri[(k + 1) % 3]; ld r = intersection(S, Seg(q1, q2)); if (r > -.5) VA.push_back(r); } } if (C[j].type == CIR) { vld inx = circle_line_intersections(S.s, S.e, C[j].C, 1); for (const ld& r : inx) VA.push_back(r); } } std::sort(VA.begin(), VA.end()); int sz = VA.size(); Pos pet = ~(S.e - S.s); Pos fug = -pet; for (int i = 0; i < sz - 1; i++) { ld d = VA[i + 1] - VA[i]; if (zero(d)) continue; ld ratio = (VA[i + 1] + VA[i]) * .5; Pos m = S.s + (S.e - S.s) * ratio; int prev = -1, col = -1, val = N, inval = N; for (int j = I - 1; j >= 0; j--) { if (C[j].type == TRI) { int f = C[j].T.inner_check(m, pet);//centripetal if (f == 2 || C[j].T.inner_check(m, fug) == 2) col = std::max(col, j); if (f) prev = std::max(prev, j); } if (C[j].type == CIR) if (C[j].C >= m) prev = std::max(prev, j); if (prev >= j) break; } for (int j = I + 1; j < N; j++) { if (C[j].type == TRI) { if (C[j].T.inner_check(m, pet)) val = std::min(val, j);//centripetal if (C[j].T.inner_check(m, fug)) inval = std::min(inval, j);//centrifugal } if (C[j].type == CIR) { if (C[j].C >= m) { val = std::min(val, j); inval = std::min(inval, j); } } if (val < N && inval < N) break; } ld a = S.green(m, d); if (prev != -1 && prev > col) { for (int j = I; j < inval; j++) A[j][prev] -= a; } for (int j = I; j < val; j++) A[j][I] += a; } return; } inline void green_circle(const int& I) {//refer to cki86201 vld VA = { 0, 2 * PI }; const Circle& q = C[I].C; for (int j = 0; j < N; j++) { if (I == j || C[j].C == q) continue; if (C[j].type == CIR) { vld inx = intersection(q, C[j].C); for (const ld& r : inx) VA.push_back(r); } if (C[j].type == TRI) { Pos* tri[] = { &C[j].T.a, &C[j].T.b, &C[j].T.c }; for (int k = 0; k < 3; k++) { const Pos& p1 = *tri[k], p2 = *tri[(k + 1) % 3]; vld inx = circle_line_intersections(p1, p2, q); for (const ld& r : inx) VA.push_back(r); } } } std::sort(VA.begin(), VA.end()); int sz = VA.size(); for (int i = 0; i < sz - 1; i++) { ld d = VA[i + 1] - VA[i]; if (zero(d)) continue; ld t = (VA[i + 1] + VA[i]) * .5; Pos R = Pos(q.r * cos(t), q.r * sin(t)); Pos pet = -R; Pos m = q.c + R; int prev = -1, val = N; for (int j = I - 1; j >= 0; j--) { if (C[j].type == TRI) { if (C[j].T.inner_check(m, pet)) prev = std::max(prev, j); } if (C[j].type == CIR) { if (C[j].C == q) continue; if (C[j].C >= m) prev = std::max(prev, j); } if (prev >= j) break; } for (int j = I + 1; j < N; j++) { if (C[j].type == TRI) { if (C[j].T.inner_check(m, pet)) val = std::min(val, j); } if (C[j].type == CIR) { if (C[j].C == q || C[j].C >= m) val = std::min(val, j); } if (val < N) break; } ld a = q.green(VA[i], VA[i + 1]); if (prev != -1) { for (int j = I; j < val; j++) A[j][prev] -= a; } for (int j = I; j < val; j++) A[j][I] += a; } return; } inline void solve() { std::cin.tie(0)->sync_with_stdio(0); std::cout.tie(0); std::cout << std::fixed; std::cout.precision(18); std::cin >> N; int t = 0, a = 0, b = 0, c = 0, d = 0, e = 0, f = 0; for (int i = 0; i < N; i++) { std::cin >> t; if (t == 1) std::cin >> a >> b >> c >> d >> e >> f; else if (t == 2) std::cin >> a >> b >> c; C[i] = Shape(t - 1, a, b, c, d, e, f); } memset(A, 0, sizeof A); for (int i = 0; i < N; i++) { if (C[i].type == TRI) { green_seg(Seg(C[i].T.a, C[i].T.b), i); green_seg(Seg(C[i].T.b, C[i].T.c), i); green_seg(Seg(C[i].T.c, C[i].T.a), i); } if (C[i].type == CIR) green_circle(i); } for (int i = 0; i < N; i++) { for (int j = 0; j <= i; j++) std::cout << A[i][j] << " "; std::cout << "\n"; } return; } int main() { solve(); return 0; }//boj11392 paper refer to cki86201
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...