Submission #998586

# Submission time Handle Problem Language Result Execution time Memory
998586 2024-06-14T09:43:13 Z steveonalex Flooding Wall (BOI24_wall) C++17
100 / 100
3906 ms 164908 KB
#include <bits/stdc++.h>
 
using namespace std;
 
typedef long long ll;
typedef unsigned long long ull;
 
#define MASK(i) (1ULL << (i))
#define GETBIT(mask, i) (((mask) >> (i)) & 1)
#define ALL(v) (v).begin(), (v).end()
#define block_of_code if(true)
 
ll max(ll a, ll b){return (a > b) ? a : b;}
ll min(ll a, ll b){return (a < b) ? a : b;}
ll gcd(ll a, ll b){return __gcd(a, b);}
 
ll LASTBIT(ll mask){return (mask) & (-mask);}
int pop_cnt(ll mask){return __builtin_popcountll(mask);}
int ctz(ull mask){return __builtin_ctzll(mask);}
int logOf(ull mask){return 63 - __builtin_clzll(mask);}
 
mt19937_64 rng(chrono::high_resolution_clock::now().time_since_epoch().count());
ll rngesus(ll l, ll r){return l + (ull) rng() % (r - l + 1);}
 
template <class T1, class T2>
    bool maximize(T1 &a, T2 b){
        if (a < b) {a = b; return true;}
        return false;
    }
 
template <class T1, class T2>
    bool minimize(T1 &a, T2 b){
        if (a > b) {a = b; return true;}
        return false;
    }
 
template <class T>
    void printArr(T container, string separator = " ", string finish = "\n", ostream &out = cout){
        for(auto item: container) out << item << separator;
        out << finish;
    }
 
template <class T>
    void remove_dup(vector<T> &a){
        sort(ALL(a));
        a.resize(unique(ALL(a)) - a.begin());
    }


 
const int MOD = 1e9 + 7;
struct Modular{
    ll x;
    Modular(ll _x = 0){x = _x;}
    Modular& operator += (Modular y){
        x += y.x;
        if (x >= MOD) x -= MOD;
        return *this;
    }
    Modular operator + (Modular y) {
        Modular tmp = *this;
        return tmp += y;
    }
 
    Modular& operator -= (Modular y){
        x -= y.x;
        if (x < 0) x += MOD;
        return *this;
    }
    Modular operator - (Modular y) {
        Modular tmp = *this;
        return tmp -= y;
    }
 
    Modular& operator *= (Modular y){
        x *= y.x;
        if (x >= MOD) x %= MOD;
        return *this;
    }
    Modular operator * (Modular y) {
        Modular tmp = *this;
        return tmp *= y;
    }
 
    // use at your own risk
    bool operator == (Modular y){
        return x == y.x;
    }
    bool operator != (Modular y){
        return x != y.x;
    }
};
ostream& operator << (ostream& out, Modular x){
    out << x.x;
    return out;
}

const int N = 5e5 + 69;
array<int, 2> a[N], c[N];
array<Modular, 2> pref[N], suff[N];
Modular p2[N];

struct FenwickTree{
    int n;
    vector<Modular> a;

    FenwickTree(int _n){
        n = _n;
        a.resize(n + 1, 1);
    }

    void update(int i){
        while(i <= n){
            a[i] *= 2;
            i += LASTBIT(i);
        }
    }

    Modular get(int i){
        Modular ans = 1;
        while(i > 0){
            ans *= a[i];
            i -= LASTBIT(i);
        }
        return ans;
    }

    void reset(){
        a = vector<Modular>(n+1, 1);
    }
};

struct SegmentTree{
    struct Node{
        Modular val, lazy;
        Node(){
            val = 0;
            lazy = 1;
        }
    };
    int n;
    vector<Node> a;

    SegmentTree(int _n){
        n = _n;
        a.resize(n * 4 + 4);
    }

    void down(int id){
        Modular x = a[id].lazy;
        a[id * 2].val *= x; a[id * 2 + 1].val *= x;
        a[id * 2].lazy *= x; a[id * 2 + 1].lazy *= x;
        a[id].lazy = 1;
    }

    void add(int i, Modular val, int l, int r, int id){
        if (l == r){
            a[id].val += val;
            return;
        }
        if (a[id].lazy != 1) down(id);
        int mid = (l + r) >> 1;
        if (i <= mid) add(i, val, l, mid, id * 2);
        if (i > mid) add(i, val, mid + 1, r, id * 2 + 1);
        a[id].val = a[id * 2].val + a[id * 2 + 1].val;
    }

    void add(int i, Modular val){
        if (1 <= i && i <= n) add(i, val, 1, n, 1);
    }

    void mul(int u, int v, Modular val, int l, int r, int id){
        if (u <= l && r <= v){
            a[id].val *= val;
            a[id].lazy *= val;
            return;
        }
        if (a[id].lazy != 1) down(id);
        int mid = (l + r) >> 1;
        if (u <= mid) mul(u, v, val, l, mid, id * 2);
        if (v > mid) mul(u, v, val, mid + 1, r, id * 2 + 1);
        a[id].val = a[id * 2].val + a[id * 2 + 1].val;
    }

    void mul(int l, int r, Modular val){
        if (l <= r) mul(l, r, val, 1, n, 1);
    }

    Modular get(int u, int v, int l, int r, int id){
        if (u <= l && r <= v) return a[id].val;
        if (a[id].lazy != 1) down(id);
        int mid = (l + r) >> 1;
        Modular ans = 0;
        if (u <= mid) ans += get(u, v, l, mid, id * 2);
        if (v > mid) ans += get(u, v, mid + 1, r, id * 2 + 1);
        return ans;
    }

    Modular get(int l, int r){
        if (l > r) return 0;
        return get(l, r, 1, n, 1);
    }
};  

int main(void){
    ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);

    int n; cin >> n;
    for(int j = 0; j<=1; ++j)
    for(int i = 0; i<n; ++i) cin >> a[i][j];
    for(int i = 0; i<n; ++i) sort(ALL(a[i]));

    p2[0] = 1;
    for(int i = 1; i<N; ++i) p2[i] = p2[i-1] * 2;

    Modular ans = 0;

    for(int i= 0; i<n; ++i){
        for(int u: a[i]) ans -= p2[n-1] * u;
    }

    vector<int> b;
    for(int i= 0; i<n; ++i)
        for(int j = 0; j<2; ++j) b.push_back(a[i][j]);
    remove_dup(b);

    for(int i = 0; i<n; ++i) for(int j = 0; j<2; ++j) c[i][j] = lower_bound(ALL(b), a[i][j]) - b.begin() + 1;

    int m = b.size();

    FenwickTree bit(m);
    int ma = 0;
    for(int i =0; i<n; ++i){
        for(int u = 0; u<=1; ++u){
            if (a[i][u] <= ma) continue;
            pref[i][u] = bit.get(c[i][u]);
        }
        bit.update(c[i][1] + 1);
        maximize(ma, a[i][0]);
    }
    bit.reset();
    ma = 0;
    for(int i = n-1; i>=0; --i) {
        for(int u = 0; u<=1; ++u){
            if (a[i][u] <= ma) continue;
            suff[i][u] = bit.get(c[i][u]);
        }
        bit.update(c[i][1] + 1);
        maximize(ma, a[i][0]);
    }

    for(int iteration = 0; iteration <= 1; ++iteration){
        SegmentTree slope(m), sum(m);

        for(int i = 0; i<n; ++i){
            for(int _u = 0; _u <= 1; ++_u){
                ans += (slope.get(1, c[i][_u] - 1) * i - sum.get(1, c[i][_u] - 1)) * p2[n-1-i];
            }

            slope.mul(1, c[i][0] - 1, 0); sum.mul(1, c[i][0] - 1, 0);
            slope.mul(c[i][1], m, 2); sum.mul(c[i][1], m, 2);

            for(int _u = 0; _u <= 1; ++_u){
                int u = a[i][_u];
                Modular cu = pref[i][_u];
                if (cu == 0) continue;
                slope.add(c[i][_u], cu * u);
                sum.add(c[i][_u], cu * u * i);

            }
        }

        reverse(a, a + n);
        reverse(c, c + n);
        reverse(pref, pref + n);
        reverse(suff, suff + n);
        for(int i = 0; i<n; ++i) swap(pref[i], suff[i]);
    }


    for(int i = 0; i<n; ++i) {
        for(int u = 0; u <= 1; ++u) ans += pref[i][u] * suff[i][u] * a[i][u];
    }

    SegmentTree slope(m), sum(m);
    for(int i = 0; i<n; ++i){
        for(int _u = 0; _u <= 1; ++_u){
            ans += (slope.get(c[i][_u], c[i][_u]) * (i+1) - sum.get(c[i][_u], c[i][_u])) * suff[i][_u];
        }

        slope.mul(1, c[i][0] - 1, 0); sum.mul(1, c[i][0] - 1, 0);
        slope.mul(c[i][1], m, 2); sum.mul(c[i][1], m, 2);

        for(int _u = 0; _u <= 1; ++_u){
            int u = a[i][_u];
            Modular cu = pref[i][_u];
            slope.add(c[i][_u], cu * u);
            sum.add(c[i][_u], cu * u * i);
        }
    }

    cout << ans << "\n";


    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 5 ms 23128 KB Output is correct
2 Correct 6 ms 23380 KB Output is correct
3 Correct 6 ms 23132 KB Output is correct
4 Correct 5 ms 23132 KB Output is correct
5 Correct 6 ms 23384 KB Output is correct
6 Correct 6 ms 23132 KB Output is correct
7 Correct 6 ms 23128 KB Output is correct
8 Correct 6 ms 23132 KB Output is correct
9 Correct 6 ms 23188 KB Output is correct
10 Correct 6 ms 23132 KB Output is correct
11 Correct 6 ms 23132 KB Output is correct
12 Correct 5 ms 22980 KB Output is correct
13 Correct 6 ms 23128 KB Output is correct
14 Correct 5 ms 23132 KB Output is correct
15 Correct 6 ms 23132 KB Output is correct
16 Correct 6 ms 23132 KB Output is correct
17 Correct 5 ms 22988 KB Output is correct
18 Correct 5 ms 23132 KB Output is correct
19 Correct 6 ms 23132 KB Output is correct
20 Correct 6 ms 23132 KB Output is correct
21 Correct 5 ms 23000 KB Output is correct
22 Correct 5 ms 23196 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 23132 KB Output is correct
2 Correct 6 ms 23132 KB Output is correct
3 Correct 6 ms 23196 KB Output is correct
4 Correct 6 ms 23128 KB Output is correct
5 Correct 6 ms 23200 KB Output is correct
6 Correct 6 ms 23144 KB Output is correct
7 Correct 5 ms 23132 KB Output is correct
8 Correct 6 ms 23132 KB Output is correct
9 Correct 5 ms 23132 KB Output is correct
10 Correct 6 ms 23160 KB Output is correct
11 Correct 6 ms 23196 KB Output is correct
12 Correct 6 ms 23132 KB Output is correct
13 Correct 6 ms 22964 KB Output is correct
14 Correct 6 ms 23132 KB Output is correct
15 Correct 5 ms 23132 KB Output is correct
16 Correct 5 ms 23232 KB Output is correct
17 Correct 6 ms 23132 KB Output is correct
18 Correct 6 ms 23132 KB Output is correct
19 Correct 5 ms 23132 KB Output is correct
20 Correct 6 ms 23132 KB Output is correct
21 Correct 5 ms 23000 KB Output is correct
22 Correct 6 ms 23132 KB Output is correct
23 Correct 5 ms 23132 KB Output is correct
24 Correct 6 ms 23132 KB Output is correct
25 Correct 5 ms 23132 KB Output is correct
26 Correct 6 ms 23132 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 23132 KB Output is correct
2 Correct 6 ms 23132 KB Output is correct
3 Correct 6 ms 23196 KB Output is correct
4 Correct 6 ms 23128 KB Output is correct
5 Correct 6 ms 23200 KB Output is correct
6 Correct 6 ms 23144 KB Output is correct
7 Correct 5 ms 23132 KB Output is correct
8 Correct 6 ms 23132 KB Output is correct
9 Correct 5 ms 23132 KB Output is correct
10 Correct 6 ms 23160 KB Output is correct
11 Correct 6 ms 23196 KB Output is correct
12 Correct 6 ms 23132 KB Output is correct
13 Correct 6 ms 22964 KB Output is correct
14 Correct 6 ms 23132 KB Output is correct
15 Correct 5 ms 23132 KB Output is correct
16 Correct 5 ms 23232 KB Output is correct
17 Correct 6 ms 23132 KB Output is correct
18 Correct 6 ms 23132 KB Output is correct
19 Correct 5 ms 23132 KB Output is correct
20 Correct 6 ms 23132 KB Output is correct
21 Correct 5 ms 23000 KB Output is correct
22 Correct 6 ms 23132 KB Output is correct
23 Correct 5 ms 23132 KB Output is correct
24 Correct 6 ms 23132 KB Output is correct
25 Correct 5 ms 23132 KB Output is correct
26 Correct 6 ms 23132 KB Output is correct
27 Correct 35 ms 23388 KB Output is correct
28 Correct 34 ms 23456 KB Output is correct
29 Correct 8 ms 23388 KB Output is correct
30 Correct 8 ms 23388 KB Output is correct
31 Correct 13 ms 23204 KB Output is correct
32 Correct 13 ms 23408 KB Output is correct
33 Correct 14 ms 23388 KB Output is correct
34 Correct 14 ms 23412 KB Output is correct
35 Correct 16 ms 23200 KB Output is correct
36 Correct 13 ms 23412 KB Output is correct
37 Correct 8 ms 23200 KB Output is correct
38 Correct 8 ms 23244 KB Output is correct
39 Correct 13 ms 23384 KB Output is correct
40 Correct 13 ms 23248 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 23128 KB Output is correct
2 Correct 6 ms 23380 KB Output is correct
3 Correct 6 ms 23132 KB Output is correct
4 Correct 5 ms 23132 KB Output is correct
5 Correct 6 ms 23384 KB Output is correct
6 Correct 6 ms 23132 KB Output is correct
7 Correct 6 ms 23128 KB Output is correct
8 Correct 6 ms 23132 KB Output is correct
9 Correct 6 ms 23188 KB Output is correct
10 Correct 6 ms 23132 KB Output is correct
11 Correct 6 ms 23132 KB Output is correct
12 Correct 5 ms 22980 KB Output is correct
13 Correct 6 ms 23128 KB Output is correct
14 Correct 5 ms 23132 KB Output is correct
15 Correct 6 ms 23132 KB Output is correct
16 Correct 6 ms 23132 KB Output is correct
17 Correct 5 ms 22988 KB Output is correct
18 Correct 5 ms 23132 KB Output is correct
19 Correct 6 ms 23132 KB Output is correct
20 Correct 6 ms 23132 KB Output is correct
21 Correct 5 ms 23000 KB Output is correct
22 Correct 5 ms 23196 KB Output is correct
23 Correct 5 ms 23132 KB Output is correct
24 Correct 6 ms 23132 KB Output is correct
25 Correct 6 ms 23196 KB Output is correct
26 Correct 6 ms 23128 KB Output is correct
27 Correct 6 ms 23200 KB Output is correct
28 Correct 6 ms 23144 KB Output is correct
29 Correct 5 ms 23132 KB Output is correct
30 Correct 6 ms 23132 KB Output is correct
31 Correct 5 ms 23132 KB Output is correct
32 Correct 6 ms 23160 KB Output is correct
33 Correct 6 ms 23196 KB Output is correct
34 Correct 6 ms 23132 KB Output is correct
35 Correct 6 ms 22964 KB Output is correct
36 Correct 6 ms 23132 KB Output is correct
37 Correct 5 ms 23132 KB Output is correct
38 Correct 5 ms 23232 KB Output is correct
39 Correct 6 ms 23132 KB Output is correct
40 Correct 6 ms 23132 KB Output is correct
41 Correct 5 ms 23132 KB Output is correct
42 Correct 6 ms 23132 KB Output is correct
43 Correct 5 ms 23000 KB Output is correct
44 Correct 6 ms 23132 KB Output is correct
45 Correct 5 ms 23132 KB Output is correct
46 Correct 6 ms 23132 KB Output is correct
47 Correct 5 ms 23132 KB Output is correct
48 Correct 6 ms 23132 KB Output is correct
49 Correct 35 ms 23388 KB Output is correct
50 Correct 34 ms 23456 KB Output is correct
51 Correct 8 ms 23388 KB Output is correct
52 Correct 8 ms 23388 KB Output is correct
53 Correct 13 ms 23204 KB Output is correct
54 Correct 13 ms 23408 KB Output is correct
55 Correct 14 ms 23388 KB Output is correct
56 Correct 14 ms 23412 KB Output is correct
57 Correct 16 ms 23200 KB Output is correct
58 Correct 13 ms 23412 KB Output is correct
59 Correct 8 ms 23200 KB Output is correct
60 Correct 8 ms 23244 KB Output is correct
61 Correct 13 ms 23384 KB Output is correct
62 Correct 13 ms 23248 KB Output is correct
63 Correct 53 ms 25904 KB Output is correct
64 Correct 54 ms 26040 KB Output is correct
65 Correct 14 ms 23384 KB Output is correct
66 Correct 13 ms 23388 KB Output is correct
67 Correct 14 ms 23396 KB Output is correct
68 Correct 14 ms 23384 KB Output is correct
69 Correct 37 ms 24056 KB Output is correct
70 Correct 45 ms 23920 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 23128 KB Output is correct
2 Correct 5 ms 23128 KB Output is correct
3 Correct 5 ms 23132 KB Output is correct
4 Correct 6 ms 23132 KB Output is correct
5 Correct 6 ms 23132 KB Output is correct
6 Correct 5 ms 23132 KB Output is correct
7 Correct 5 ms 23132 KB Output is correct
8 Correct 5 ms 23132 KB Output is correct
9 Correct 5 ms 22976 KB Output is correct
10 Correct 8 ms 23388 KB Output is correct
11 Correct 8 ms 23388 KB Output is correct
12 Correct 8 ms 23388 KB Output is correct
13 Correct 8 ms 23388 KB Output is correct
14 Correct 139 ms 31688 KB Output is correct
15 Correct 142 ms 31908 KB Output is correct
16 Correct 136 ms 31800 KB Output is correct
17 Correct 135 ms 31684 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 23128 KB Output is correct
2 Correct 6 ms 23380 KB Output is correct
3 Correct 6 ms 23132 KB Output is correct
4 Correct 5 ms 23132 KB Output is correct
5 Correct 6 ms 23384 KB Output is correct
6 Correct 6 ms 23132 KB Output is correct
7 Correct 6 ms 23128 KB Output is correct
8 Correct 6 ms 23132 KB Output is correct
9 Correct 6 ms 23188 KB Output is correct
10 Correct 6 ms 23132 KB Output is correct
11 Correct 6 ms 23132 KB Output is correct
12 Correct 5 ms 22980 KB Output is correct
13 Correct 6 ms 23128 KB Output is correct
14 Correct 5 ms 23132 KB Output is correct
15 Correct 6 ms 23132 KB Output is correct
16 Correct 6 ms 23132 KB Output is correct
17 Correct 5 ms 22988 KB Output is correct
18 Correct 5 ms 23132 KB Output is correct
19 Correct 6 ms 23132 KB Output is correct
20 Correct 6 ms 23132 KB Output is correct
21 Correct 5 ms 23000 KB Output is correct
22 Correct 5 ms 23196 KB Output is correct
23 Correct 5 ms 23132 KB Output is correct
24 Correct 6 ms 23132 KB Output is correct
25 Correct 6 ms 23196 KB Output is correct
26 Correct 6 ms 23128 KB Output is correct
27 Correct 6 ms 23200 KB Output is correct
28 Correct 6 ms 23144 KB Output is correct
29 Correct 5 ms 23132 KB Output is correct
30 Correct 6 ms 23132 KB Output is correct
31 Correct 5 ms 23132 KB Output is correct
32 Correct 6 ms 23160 KB Output is correct
33 Correct 6 ms 23196 KB Output is correct
34 Correct 6 ms 23132 KB Output is correct
35 Correct 6 ms 22964 KB Output is correct
36 Correct 6 ms 23132 KB Output is correct
37 Correct 5 ms 23132 KB Output is correct
38 Correct 5 ms 23232 KB Output is correct
39 Correct 6 ms 23132 KB Output is correct
40 Correct 6 ms 23132 KB Output is correct
41 Correct 5 ms 23132 KB Output is correct
42 Correct 6 ms 23132 KB Output is correct
43 Correct 5 ms 23000 KB Output is correct
44 Correct 6 ms 23132 KB Output is correct
45 Correct 5 ms 23132 KB Output is correct
46 Correct 6 ms 23132 KB Output is correct
47 Correct 5 ms 23132 KB Output is correct
48 Correct 6 ms 23132 KB Output is correct
49 Correct 35 ms 23388 KB Output is correct
50 Correct 34 ms 23456 KB Output is correct
51 Correct 8 ms 23388 KB Output is correct
52 Correct 8 ms 23388 KB Output is correct
53 Correct 13 ms 23204 KB Output is correct
54 Correct 13 ms 23408 KB Output is correct
55 Correct 14 ms 23388 KB Output is correct
56 Correct 14 ms 23412 KB Output is correct
57 Correct 16 ms 23200 KB Output is correct
58 Correct 13 ms 23412 KB Output is correct
59 Correct 8 ms 23200 KB Output is correct
60 Correct 8 ms 23244 KB Output is correct
61 Correct 13 ms 23384 KB Output is correct
62 Correct 13 ms 23248 KB Output is correct
63 Correct 53 ms 25904 KB Output is correct
64 Correct 54 ms 26040 KB Output is correct
65 Correct 14 ms 23384 KB Output is correct
66 Correct 13 ms 23388 KB Output is correct
67 Correct 14 ms 23396 KB Output is correct
68 Correct 14 ms 23384 KB Output is correct
69 Correct 37 ms 24056 KB Output is correct
70 Correct 45 ms 23920 KB Output is correct
71 Correct 5 ms 23128 KB Output is correct
72 Correct 5 ms 23128 KB Output is correct
73 Correct 5 ms 23132 KB Output is correct
74 Correct 6 ms 23132 KB Output is correct
75 Correct 6 ms 23132 KB Output is correct
76 Correct 5 ms 23132 KB Output is correct
77 Correct 5 ms 23132 KB Output is correct
78 Correct 5 ms 23132 KB Output is correct
79 Correct 5 ms 22976 KB Output is correct
80 Correct 8 ms 23388 KB Output is correct
81 Correct 8 ms 23388 KB Output is correct
82 Correct 8 ms 23388 KB Output is correct
83 Correct 8 ms 23388 KB Output is correct
84 Correct 139 ms 31688 KB Output is correct
85 Correct 142 ms 31908 KB Output is correct
86 Correct 136 ms 31800 KB Output is correct
87 Correct 135 ms 31684 KB Output is correct
88 Correct 3906 ms 164688 KB Output is correct
89 Correct 3831 ms 164908 KB Output is correct
90 Correct 378 ms 31680 KB Output is correct
91 Correct 429 ms 31748 KB Output is correct
92 Correct 403 ms 31680 KB Output is correct
93 Correct 394 ms 31680 KB Output is correct
94 Correct 417 ms 31676 KB Output is correct
95 Correct 416 ms 31680 KB Output is correct
96 Correct 2113 ms 66892 KB Output is correct
97 Correct 2111 ms 67032 KB Output is correct