Submission #998442

# Submission time Handle Problem Language Result Execution time Memory
998442 2024-06-14T01:53:47 Z HUECTRUM Feast (NOI19_feast) C++14
100 / 100
217 ms 12220 KB
#include <iostream>
#include <utility>
#include <vector>
#include <algorithm>
#include <numeric>
#include <map>
#include <unordered_set>
#include <iostream>
#include <utility>
#include <vector>
#include <algorithm>
#include <numeric>
#include <map>
#include <unordered_set>
#include <unordered_map>
#include <queue>
#include <set>
#include <stack>
#include <fstream>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <bitset>
#include <sstream>
#include <ext/rope>
#include <ctime>
#include <random>
#include <cstdlib>
#include <complex>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;

/* clang-format off */

/* TYPES  */
#define ll long long
#define pii pair<int, int>
#define pll pair<long long, long long>
#define vi vector<int>
#define vll vector<long long>
#define vpii vector<pair<int, int>>
#define vpii vector<pair<int, int>>
#define vvpii vector<vector<pair<int, int>>>
#define vpll vector<pair<long long, long long>>
#define vvpll vector<vector<pair<long long, long long>>>
#define vvi vector<vector<int>>
#define vvll vector<vector<long long>>
#define mii map<int, int>
#define si set<int>
#define sc set<char>



/* FUNCTIONS */
#define feach(el, v) for(auto &el: v)
#define rep(i, n) for(int i=0;i<n;i++)
#define reprv(i, n) for(int i=n-1;i>=0;i--)
#define reps(i, s, e) for(int i=s;i<e;i++)
#define reprve(i, e, s) for(int i=e-1;i>=s;i--)
#define repe(x, y) for (auto &x: y)
#define repe2(x, a, y) for (auto &[x,a]: y)

typedef tree<int, null_type, less_equal<>, rb_tree_tag, tree_order_statistics_node_update> oSet;

const ll mod = 1e9 + 7;

template<ll mod = 1000000007>
struct ModInt {
    ll p;

    ModInt() : p(0) {}

    ModInt(ll x) { p = x >= 0 ? x % mod : x + (-x + mod - 1) / mod * mod; }

    ModInt &operator+=(const ModInt &y) {
        p = p + *y - ((p + *y) >= mod ? mod : 0);
        return *this;
    }

    ModInt &operator-=(const ModInt &y) {
        p = p - *y + (p - *y < 0 ? mod : 0);
        return *this;
    }

    ModInt &operator*=(const ModInt &y) {
        p = (p * *y) % mod;
        return *this;
    }

    ModInt &operator%=(const ModInt &y) {
        if (y)p %= *y;
        return *this;
    }

    ModInt operator+(const ModInt &y) const {
        ModInt x = *this;
        return x += y;
    }

    ModInt operator-(const ModInt &y) const {
        ModInt x = *this;
        return x -= y;
    }

    ModInt operator*(const ModInt &y) const {
        ModInt x = *this;
        return x *= y;
    }

    ModInt operator%(const ModInt &y) const {
        ModInt x = *this;
        return x %= y;
    }

    ModInt binpow(const ModInt &y, ll pow) const {
        pow %= mod - 1;
        ModInt res = 1, a = y;
        while (pow) {
            if (pow & 1) res *= a;
            a *= a, pow >>= 1;
        }
        return res;
    }

    ModInt inv() const { return binpow(*this, mod - 2); }

    ModInt &operator/=(const ModInt &y) {
        p = (p * y.inv().p) % mod;
        return *this;
    }

    ModInt operator/(const ModInt &y) const {
        ModInt x = *this;
        return x /= y;
    }

    friend istream &operator>>(istream &is, ModInt &a) {
        int v;
        is >> v;
        a = ModInt(v);
        return is;
    }

    friend ostream &operator<<(ostream &os, const ModInt &a) { return os << a.p; }

    ModInt &operator++() {
        p = (p + 1) % mod;
        return *this;
    }

    ModInt &operator--() {
        p = (p - 1 + mod) % mod;
        return *this;
    }

    bool operator==(const ModInt &y) const { return p == *y; }

    bool operator!=(const ModInt &y) const { return p != *y; }

    const ll &operator*() const { return p; }

    ll &operator*() { return p; }

};

using Mint = ModInt<>;
#define vmint vector<Mint>

#pragma GCC target("popcnt")

//////////////////////////////////////////////////////////////////////////
int n;
vll v;

pll solve(ll lambda) {
    pair<ll, ll> dp[n][2];

    dp[0][0] = {0, 0}, dp[0][1] = {v[0] - lambda, 1};

    reps(i, 1, n) {
        dp[i][0] = max(dp[i - 1][0], dp[i - 1][1]);
        dp[i][1] = max(
                make_pair(dp[i - 1][0].first + v[i] - lambda, dp[i - 1][0].second + 1),
                make_pair(dp[i - 1][1].first + v[i], dp[i - 1][1].second)
        );
    }

    return max(dp[n - 1][0], dp[n - 1][1]);
}

int main() {
    ll k; cin >> n >> k;

    v = vll(n); rep(i, n) cin >> v[i];

    ll l = 0, r = 1e18;
    while (r > l) {
        ll mid = (l + r + 1) / 2;
        pll sol = solve(mid);

        if (sol.second >= k) l = mid;
        else r = mid - 1;
    }

    pll sL = solve(l);
    cout << sL.first + k * l;
}
# Verdict Execution time Memory Grader output
1 Correct 112 ms 11668 KB Output is correct
2 Correct 121 ms 11960 KB Output is correct
3 Correct 117 ms 12116 KB Output is correct
4 Correct 117 ms 11856 KB Output is correct
5 Correct 114 ms 11952 KB Output is correct
6 Correct 116 ms 11600 KB Output is correct
7 Correct 113 ms 11600 KB Output is correct
8 Correct 115 ms 11960 KB Output is correct
9 Correct 114 ms 11600 KB Output is correct
10 Correct 125 ms 11860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 86 ms 11856 KB Output is correct
2 Correct 87 ms 11996 KB Output is correct
3 Correct 110 ms 11856 KB Output is correct
4 Correct 83 ms 11956 KB Output is correct
5 Correct 115 ms 11604 KB Output is correct
6 Correct 83 ms 11600 KB Output is correct
7 Correct 86 ms 11988 KB Output is correct
8 Correct 129 ms 11856 KB Output is correct
9 Correct 137 ms 11604 KB Output is correct
10 Correct 84 ms 11988 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 149 ms 11856 KB Output is correct
2 Correct 151 ms 11860 KB Output is correct
3 Correct 147 ms 11856 KB Output is correct
4 Correct 147 ms 11856 KB Output is correct
5 Correct 144 ms 11968 KB Output is correct
6 Correct 150 ms 11856 KB Output is correct
7 Correct 148 ms 11992 KB Output is correct
8 Correct 158 ms 12220 KB Output is correct
9 Correct 166 ms 11996 KB Output is correct
10 Correct 149 ms 11856 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 600 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 600 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 1 ms 344 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 600 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 1 ms 344 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 1 ms 348 KB Output is correct
22 Correct 1 ms 348 KB Output is correct
23 Correct 1 ms 344 KB Output is correct
24 Correct 1 ms 344 KB Output is correct
25 Correct 1 ms 348 KB Output is correct
26 Correct 1 ms 348 KB Output is correct
27 Correct 1 ms 348 KB Output is correct
28 Correct 1 ms 348 KB Output is correct
29 Correct 1 ms 348 KB Output is correct
30 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 112 ms 11668 KB Output is correct
2 Correct 121 ms 11960 KB Output is correct
3 Correct 117 ms 12116 KB Output is correct
4 Correct 117 ms 11856 KB Output is correct
5 Correct 114 ms 11952 KB Output is correct
6 Correct 116 ms 11600 KB Output is correct
7 Correct 113 ms 11600 KB Output is correct
8 Correct 115 ms 11960 KB Output is correct
9 Correct 114 ms 11600 KB Output is correct
10 Correct 125 ms 11860 KB Output is correct
11 Correct 86 ms 11856 KB Output is correct
12 Correct 87 ms 11996 KB Output is correct
13 Correct 110 ms 11856 KB Output is correct
14 Correct 83 ms 11956 KB Output is correct
15 Correct 115 ms 11604 KB Output is correct
16 Correct 83 ms 11600 KB Output is correct
17 Correct 86 ms 11988 KB Output is correct
18 Correct 129 ms 11856 KB Output is correct
19 Correct 137 ms 11604 KB Output is correct
20 Correct 84 ms 11988 KB Output is correct
21 Correct 149 ms 11856 KB Output is correct
22 Correct 151 ms 11860 KB Output is correct
23 Correct 147 ms 11856 KB Output is correct
24 Correct 147 ms 11856 KB Output is correct
25 Correct 144 ms 11968 KB Output is correct
26 Correct 150 ms 11856 KB Output is correct
27 Correct 148 ms 11992 KB Output is correct
28 Correct 158 ms 12220 KB Output is correct
29 Correct 166 ms 11996 KB Output is correct
30 Correct 149 ms 11856 KB Output is correct
31 Correct 0 ms 600 KB Output is correct
32 Correct 0 ms 344 KB Output is correct
33 Correct 0 ms 348 KB Output is correct
34 Correct 0 ms 348 KB Output is correct
35 Correct 0 ms 348 KB Output is correct
36 Correct 0 ms 348 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 0 ms 348 KB Output is correct
39 Correct 0 ms 348 KB Output is correct
40 Correct 0 ms 348 KB Output is correct
41 Correct 1 ms 348 KB Output is correct
42 Correct 1 ms 348 KB Output is correct
43 Correct 1 ms 348 KB Output is correct
44 Correct 0 ms 348 KB Output is correct
45 Correct 1 ms 344 KB Output is correct
46 Correct 0 ms 348 KB Output is correct
47 Correct 0 ms 348 KB Output is correct
48 Correct 0 ms 348 KB Output is correct
49 Correct 1 ms 348 KB Output is correct
50 Correct 0 ms 348 KB Output is correct
51 Correct 1 ms 348 KB Output is correct
52 Correct 1 ms 348 KB Output is correct
53 Correct 1 ms 344 KB Output is correct
54 Correct 1 ms 344 KB Output is correct
55 Correct 1 ms 348 KB Output is correct
56 Correct 1 ms 348 KB Output is correct
57 Correct 1 ms 348 KB Output is correct
58 Correct 1 ms 348 KB Output is correct
59 Correct 1 ms 348 KB Output is correct
60 Correct 1 ms 348 KB Output is correct
61 Correct 172 ms 11856 KB Output is correct
62 Correct 217 ms 12112 KB Output is correct
63 Correct 164 ms 11824 KB Output is correct
64 Correct 177 ms 12112 KB Output is correct
65 Correct 182 ms 11856 KB Output is correct
66 Correct 185 ms 11860 KB Output is correct
67 Correct 180 ms 11852 KB Output is correct
68 Correct 151 ms 11984 KB Output is correct
69 Correct 156 ms 11680 KB Output is correct
70 Correct 144 ms 11656 KB Output is correct