Submission #998086

# Submission time Handle Problem Language Result Execution time Memory
998086 2024-06-13T09:32:31 Z arbuzick Izvanzemaljci (COI21_izvanzemaljci) C++17
68 / 100
3000 ms 8264 KB
#include <bits/stdc++.h>
#define int long long

using namespace std;

constexpr long long inf = (long long)1e18 + 7;

constexpr long long vl = 3000000001;

struct Point {
    int x, y;

    Point(int _x = 0, int _y = 0) {
        x = _x, y = _y;
    }
};

struct Answer {
    vector<pair<Point, int>> squares;
    int mx;

    Answer() {
        mx = 0;
    }

    void add(Point p, int side) {
        squares.emplace_back(p, side);
        mx = max(mx, side);
    }

    bool operator<(Answer b) {
        return mx < b.mx;
    }
};

Answer split2(vector<Point> a, long long mn_x, long long mx_x, long long mn_y, long long mx_y) {
    auto check = [&](Answer ans) -> bool {
        for (int i = 0; i < (int)ans.squares.size(); ++i) {
            if (ans.squares[i].first.x <= mn_x || ans.squares[i].first.x + ans.squares[i].second >= mx_x) {
                return false;
            }
            if (ans.squares[i].first.y < mn_y || ans.squares[i].first.y + ans.squares[i].second >= mx_y) {
                return false;
            }
        }
        return true;
    };
    int n = a.size();
    sort(a.begin(), a.end(), [&](Point a, Point b) -> bool {
        return a.x < b.x;
    });
    vector<int> pr_mn(n + 1, inf), pr_mx(n + 1, -inf), suf_mn(n + 1, inf), suf_mx(n + 1, -inf);
    for (int i = 0; i < n; ++i) {
        pr_mn[i + 1] = min(pr_mn[i], a[i].y);
        pr_mx[i + 1] = max(pr_mx[i], a[i].y);
    }
    for (int i = n - 1; i >= 0; --i) {
        suf_mn[i] = min(suf_mn[i + 1], a[i].y);
        suf_mx[i] = max(suf_mx[i + 1], a[i].y);
    }
    Answer ans;
    ans.add(Point(0, 0), inf);
    for (int i = 0; i + 1 < n; ++i) {
        if (a[i].x == a[i + 1].x) {
            continue;
        }
        Answer ans_nw;
        int side1 = max(1LL, max(a[i].x - a[0].x, pr_mx[i + 1] - pr_mn[i + 1]));
        Point p1(a[i].x - side1, pr_mn[i + 1]);
        if (p1.x <= mn_x) {
            p1.x = min(a[0].x, a[i + 1].x - 1 - side1);
            if (p1.x <= mn_x) {
                continue;
            }
        }
        if (p1.y + side1 >= mx_y) {
            p1.y = pr_mx[i + 1] - side1;
        }
        ans_nw.add(p1, side1);
        int side2 = max(1LL, max(a[n - 1].x - a[i + 1].x, suf_mx[i + 1] - suf_mn[i + 1]));
        Point p2(a[i + 1].x, suf_mn[i + 1]);
        if (p2.x + side2 >= mx_x) {
            p2.x = max(a[i].x + 1, a[n - 1].x - side2);
            if (p2.x + side2 >= mx_x) {
                continue;
            }
        }
        if (p2.y + side2 >= mx_y) {
            p2.y = suf_mx[i + 1] - side2;
        }
        ans_nw.add(p2, side2);
        if (check(ans_nw) && ans_nw < ans) {
            ans = ans_nw;
        }
    }
    int side = max(1LL, max(a[n - 1].x - a[0].x, pr_mx[n] - pr_mn[n]));
    Point p(a[0].x, pr_mn[n]);
    if (p.x + side >= mx_x) {
        p.x = a[n - 1].x - side;
    }
    if (p.y + side >= mx_y) {
        p.y = pr_mx[n] - side;
    }
    Answer ans_nw;
    ans_nw.add(p, side);
    if (p.x - 2 >= mn_x && p.y - 2 >= mn_y) {
        ans_nw.add(Point(p.x - 2, p.y - 2), 1);
        if (check(ans_nw) && ans_nw < ans) {
            ans = ans_nw;
        }
    } else if (p.x - 2 >= mn_x && p.y + side + 2 <= mx_y) {
        ans_nw.add(Point(p.x - 2, p.y + side + 1), 1);
        if (check(ans_nw) && ans_nw < ans) {
            ans = ans_nw;
        }
    } else if (p.x + side + 2 <= mx_x && p.y - 2 >= mn_y) {
        ans_nw.add(Point(p.x + side + 1, p.y - 2), 1);
        if (check(ans_nw) && ans_nw < ans) {
            ans = ans_nw;
        }
    } else if (p.x + side + 2 <= mx_x && p.y + side + 2 <= mx_y) {
        ans_nw.add(Point(p.x + side + 1, p.y + side + 1), 1);
        if (check(ans_nw) && ans_nw < ans) {
            ans = ans_nw;
        }
    } else {
        exit(1);
    }
    return ans;
}

Answer get_ans(int n, vector<Point> a) {
    auto check = [&](Answer ans) -> bool {
        for (int i = 0; i < 3; ++i) {
            if (ans.squares[i].first.x < -vl || ans.squares[i].first.x > vl) {
                return false;
            }
            if (ans.squares[i].first.y < -vl || ans.squares[i].first.y > vl) {
                return false;
            }
        }
        for (int i = 0; i < 3; ++i) {
            for (int j = i + 1; j < 3; ++j) {
                if (min(ans.squares[i].first.x + ans.squares[i].second, ans.squares[j].first.x + ans.squares[j].second) >= max(ans.squares[i].first.x, ans.squares[j].first.x) &&
                    min(ans.squares[i].first.y + ans.squares[i].second, ans.squares[j].first.y + ans.squares[j].second) >= max(ans.squares[i].first.y, ans.squares[j].first.y)) {
                    return false;
                }
            }
        }
        return true;
    };

    sort(a.begin(), a.end(), [&](Point a, Point b) -> bool {
        return a.x < b.x;
    });
    Answer ans;
    ans.add(Point(0, 0), inf);
    int mn_y = inf, mx_y = -inf;
    for (int i = 0; i < n; ++i) {
        mn_y = min(mn_y, a[i].y);
        mx_y = max(mx_y, a[i].y);
        if (i == n - 1 || a[i].x == a[i + 1].x) {
            continue;
        }
        vector<Point> b;
        for (int j = i + 1; j < n; ++j) {
            b.push_back(a[j]);
        }
        Answer ans1_ans = split2(b, a[i].x, vl, -vl, vl);
        for (int j = 0; j < (int)b.size(); ++j) {
            swap(b[j].x, b[j].y);
        }
        Answer ans2_ans = split2(b, -vl, vl, a[i].x, vl);
        for (int i = 0; i < 2; ++i) {
            swap(ans2_ans.squares[i].first.x, ans2_ans.squares[i].first.y);
        }
        if (ans2_ans < ans1_ans) {
            ans1_ans = ans2_ans;
        }
        int side = max(1LL, max(a[i].x - a[0].x, mx_y - mn_y));
        ans1_ans.add(Point(a[i].x - side, mn_y), side);
        if (ans1_ans < ans) {
            ans = ans1_ans;
        }
    }
    int side = max(1LL, max(a[n - 1].x - a[0].x, mx_y - mn_y));
    Point p(a[0].x, mn_y);
    Answer ans_nw;
    ans_nw.add(p, side);
    if (p.x - 4 >= -vl && p.y - 4 >= -vl) {
        ans_nw.add(Point(p.x - 2, p.y - 2), 1);
        ans_nw.add(Point(p.x - 4, p.y - 4), 1);
        if (ans_nw < ans) {
            ans = ans_nw;
        }
    } else if (p.x - 4 >= -vl && p.y + 4 <= vl) {
        ans_nw.add(Point(p.x - 2, p.y + 1), 1);
        ans_nw.add(Point(p.x - 4, p.y + 3), 1);
        if (ans_nw < ans) {
            ans = ans_nw;
        }
    } else if (p.x + 4 <= vl && p.y - 4 >= vl) {
        ans_nw.add(Point(p.x + 1, p.y - 2), 1);
        ans_nw.add(Point(p.x + 3, p.y - 4), 1);
        if (ans_nw < ans) {
            ans = ans_nw;
        }
    } else if (p.x + 4 <= vl && p.y + 4 <= vl) {
        ans_nw.add(Point(p.x + 1, p.y + 1), 1);
        ans_nw.add(Point(p.x + 3, p.y + 3), 1);
        if (ans_nw < ans) {
            ans = ans_nw;
        }
    } else {
        exit(1);
    }

    mn_y = inf, mx_y = -inf;
    for (int i = n - 1; i > 0; --i) {
        mn_y = min(mn_y, a[i].y);
        mx_y = max(mx_y, a[i].y);
        if (i == 0 || a[i].x == a[i - 1].x) {
            continue;
        }
        vector<Point> b;
        for (int j = 0; j < i; ++j) {
            b.push_back(a[j]);
        }
        Answer ans1_ans = split2(b, -vl, a[i].x, -vl, vl);
        for (int j = 0; j < (int)b.size(); ++j) {
            swap(b[j].x, b[j].y);
        }
        Answer ans2_ans = split2(b, -vl, vl, -vl, a[i].x);
        for (int i = 0; i < 2; ++i) {
            swap(ans2_ans.squares[i].first.x, ans2_ans.squares[i].first.y);
        }
        if (ans2_ans < ans1_ans) {
            ans1_ans = ans2_ans;
        }
        int side = max(1LL, max(a[n - 1].x - a[i].x, mx_y - mn_y));
        ans1_ans.add(Point(a[i].x, mn_y), side);
        if (ans1_ans < ans) {
            ans = ans1_ans;
        }
    }

    assert(check(ans));

    return ans;
}

void solve() {
    int n, k;
    cin >> n >> k;
    vector<Point> a(n);
    for (int i = 0; i < n; ++i) {
        cin >> a[i].x >> a[i].y;
    }
    if (k == 1) {
        int mn_x = inf, mx_x = -inf, mn_y = inf, mx_y = -inf;
        for (int i = 0; i < n; ++i) {
            mn_x = min(mn_x, a[i].x);
            mx_x = max(mx_x, a[i].x);
            mn_y = min(mn_y, a[i].y);
            mx_y = max(mx_y, a[i].y);
        }
        cout << mn_x << ' ' << mn_y << ' ' << max(1LL, max(mx_x - mn_x, mx_y - mn_y)) << '\n';
    } else if (k == 2) {
        auto ans1 = split2(a, -vl, vl, -vl, vl);
        for (int i = 0; i < n; ++i) {
            swap(a[i].x, a[i].y);
        }
        auto ans2 = split2(a, -vl, vl, -vl, vl);
        for (int i = 0; i < k; ++i) {
            swap(ans2.squares[i].first.x, ans2.squares[i].first.y);
        }
        if (ans1 < ans2) {
            for (int i = 0; i < k; ++i) {
                cout << ans1.squares[i].first.x << ' ' << ans1.squares[i].first.y << ' ' << ans1.squares[i].second << '\n';
            }
        } else {
            for (int i = 0; i < k; ++i) {
                cout << ans2.squares[i].first.x << ' ' << ans2.squares[i].first.y << ' ' << ans2.squares[i].second << '\n';
            }
        }
    } else if (k == 3) {
        auto ans1 = get_ans(n, a);
        for (int i = 0; i < n; ++i) {
            swap(a[i].x, a[i].y);
        }
        auto ans2 = get_ans(n, a);
        for (int i = 0; i < k; ++i) {
            swap(ans2.squares[i].first.x, ans2.squares[i].first.y);
        }
        auto check = [&](Answer ans) -> bool {
            for (int i = 0; i < k; ++i) {
                if (ans.squares[i].first.x < -vl || ans.squares[i].first.x > vl) {
                    return false;
                }
                if (ans.squares[i].first.y < -vl || ans.squares[i].first.y > vl) {
                    return false;
                }
            }
            for (int i = 0; i < k; ++i) {
                for (int j = i + 1; j < k; ++j) {
                    if (min(ans.squares[i].first.x + ans.squares[i].second, ans.squares[j].first.x + ans.squares[j].second) >= max(ans.squares[i].first.x, ans.squares[j].first.x) &&
                        min(ans.squares[i].first.y + ans.squares[i].second, ans.squares[j].first.y + ans.squares[j].second) >= max(ans.squares[i].first.y, ans.squares[j].first.y)) {
                        return false;
                    }
                }
            }
            return true;
        };
        assert(check(ans1));
        assert(check(ans2));
        if (ans1 < ans2) {
            for (int i = 0; i < k; ++i) {
                cout << ans1.squares[i].first.x << ' ' << ans1.squares[i].first.y << ' ' << ans1.squares[i].second << '\n';
            }
        } else {
            for (int i = 0; i < k; ++i) {
                cout << ans2.squares[i].first.x << ' ' << ans2.squares[i].first.y << ' ' << ans2.squares[i].second << '\n';
            }
        }
    }
}

signed main() {
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 19 ms 1884 KB Output is correct
8 Correct 15 ms 1884 KB Output is correct
9 Correct 18 ms 1884 KB Output is correct
10 Correct 15 ms 1880 KB Output is correct
11 Correct 15 ms 1884 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 47 ms 6648 KB Output is correct
11 Correct 44 ms 6748 KB Output is correct
12 Correct 44 ms 6656 KB Output is correct
13 Correct 43 ms 6644 KB Output is correct
14 Correct 44 ms 6640 KB Output is correct
15 Correct 58 ms 6644 KB Output is correct
16 Correct 82 ms 6644 KB Output is correct
17 Correct 42 ms 6044 KB Output is correct
18 Correct 37 ms 5976 KB Output is correct
19 Correct 34 ms 5464 KB Output is correct
20 Correct 36 ms 5724 KB Output is correct
21 Correct 43 ms 6648 KB Output is correct
22 Correct 48 ms 6672 KB Output is correct
23 Correct 45 ms 6644 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 452 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 0 ms 604 KB Output is correct
24 Correct 0 ms 348 KB Output is correct
25 Correct 0 ms 348 KB Output is correct
26 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 262 ms 664 KB Output is correct
2 Correct 269 ms 536 KB Output is correct
3 Correct 271 ms 664 KB Output is correct
4 Correct 264 ms 592 KB Output is correct
5 Correct 261 ms 536 KB Output is correct
6 Correct 266 ms 532 KB Output is correct
7 Correct 277 ms 592 KB Output is correct
8 Correct 268 ms 600 KB Output is correct
9 Correct 263 ms 596 KB Output is correct
10 Correct 276 ms 856 KB Output is correct
11 Correct 326 ms 592 KB Output is correct
12 Correct 277 ms 668 KB Output is correct
13 Correct 207 ms 592 KB Output is correct
14 Correct 206 ms 596 KB Output is correct
15 Correct 215 ms 652 KB Output is correct
16 Correct 228 ms 592 KB Output is correct
17 Correct 224 ms 848 KB Output is correct
18 Correct 231 ms 796 KB Output is correct
19 Correct 199 ms 548 KB Output is correct
20 Correct 208 ms 596 KB Output is correct
21 Correct 252 ms 592 KB Output is correct
22 Correct 237 ms 596 KB Output is correct
23 Correct 197 ms 596 KB Output is correct
24 Correct 212 ms 592 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 263 ms 596 KB Output is correct
2 Correct 285 ms 848 KB Output is correct
3 Correct 261 ms 596 KB Output is correct
4 Correct 263 ms 536 KB Output is correct
5 Correct 268 ms 556 KB Output is correct
6 Correct 268 ms 540 KB Output is correct
7 Correct 295 ms 852 KB Output is correct
8 Correct 260 ms 596 KB Output is correct
9 Correct 261 ms 592 KB Output is correct
10 Correct 269 ms 592 KB Output is correct
11 Correct 264 ms 552 KB Output is correct
12 Correct 266 ms 592 KB Output is correct
13 Correct 261 ms 600 KB Output is correct
14 Execution timed out 3020 ms 8264 KB Time limit exceeded
15 Halted 0 ms 0 KB -