Submission #998082

# Submission time Handle Problem Language Result Execution time Memory
998082 2024-06-13T09:26:07 Z arbuzick Izvanzemaljci (COI21_izvanzemaljci) C++17
26 / 100
3000 ms 8268 KB
#include <bits/stdc++.h>
#define int long long

using namespace std;

constexpr long long inf = (long long)1e18 + 7;

constexpr long long vl = 3000000001;

struct Point {
    int x, y;

    Point(int _x = 0, int _y = 0) {
        x = _x, y = _y;
    }
};

struct Answer {
    vector<pair<Point, int>> squares;
    int mx;

    Answer() {
        mx = 0;
    }

    void add(Point p, int side) {
        squares.emplace_back(p, side);
        mx = max(mx, side);
    }

    bool operator<(Answer b) {
        return mx < b.mx;
    }
};

Answer split2(vector<Point> a, long long mn_x, long long mx_x, long long mn_y, long long mx_y) {
    auto check = [&](Answer ans) -> bool {
        for (int i = 0; i < (int)ans.squares.size(); ++i) {
            if (ans.squares[i].first.x <= mn_x || ans.squares[i].first.x + ans.squares[i].second >= mx_x) {
                return false;
            }
            if (ans.squares[i].first.y < mn_y || ans.squares[i].first.y + ans.squares[i].second >= mx_y) {
                return false;
            }
        }
        return true;
    };
    int n = a.size();
    sort(a.begin(), a.end(), [&](Point a, Point b) -> bool {
        return a.x < b.x;
    });
    vector<int> pr_mn(n + 1, inf), pr_mx(n + 1, -inf), suf_mn(n + 1, inf), suf_mx(n + 1, -inf);
    for (int i = 0; i < n; ++i) {
        pr_mn[i + 1] = min(pr_mn[i], a[i].y);
        pr_mx[i + 1] = max(pr_mx[i], a[i].y);
    }
    for (int i = n - 1; i >= 0; --i) {
        suf_mn[i] = min(suf_mn[i + 1], a[i].y);
        suf_mx[i] = max(suf_mx[i + 1], a[i].y);
    }
    Answer ans;
    ans.add(Point(0, 0), inf);
    for (int i = 0; i + 1 < n; ++i) {
        if (a[i].x == a[i + 1].x) {
            continue;
        }
        Answer ans_nw;
        int side1 = max(1LL, max(a[i].x - a[0].x, pr_mx[i + 1] - pr_mn[i + 1]));
        Point p1(a[i].x - side1, pr_mn[i + 1]);
        if (p1.x <= mn_x) {
            p1.x = a[i + 1].x - 1 - side1;
            if (p1.x <= mn_x) {
                continue;
            }
        }
        if (p1.y + side1 >= mx_y) {
            p1.y = pr_mx[i + 1] - side1;
        }
        ans_nw.add(p1, side1);
        int side2 = max(1LL, max(a[n - 1].x - a[i + 1].x, suf_mx[i + 1] - suf_mn[i + 1]));
        Point p2(a[i + 1].x, suf_mn[i + 1]);
        if (p2.x + side2 >= mx_x) {
            p2.x = max(a[i].x + 1, a[n - 1].x - side2);
            if (p2.x + side2 >= mx_x) {
                continue;
            }
        }
        if (p2.y + side2 >= mx_y) {
            p2.y = suf_mx[i + 1] - side2;
        }
        ans_nw.add(p2, side2);
        if (check(ans_nw) && ans_nw < ans) {
            ans = ans_nw;
        }
    }
    int side = max(1LL, max(a[n - 1].x - a[0].x, pr_mx[n] - pr_mn[n]));
    Point p(a[0].x, pr_mn[n]);
    if (p.x + side >= mx_x) {
        p.x = a[n - 1].x - side;
    }
    if (p.y + side >= mx_y) {
        p.y = pr_mx[n] - side;
    }
    Answer ans_nw;
    ans_nw.add(p, side);
    if (p.x - 2 >= mn_x && p.y - 2 >= mn_y) {
        ans_nw.add(Point(p.x - 2, p.y - 2), 1);
        if (check(ans_nw) && ans_nw < ans) {
            ans = ans_nw;
        }
    } else if (p.x - 2 >= mn_x && p.y + side + 2 <= mx_y) {
        ans_nw.add(Point(p.x - 2, p.y + side + 1), 1);
        if (check(ans_nw) && ans_nw < ans) {
            ans = ans_nw;
        }
    } else if (p.x + side + 2 <= mx_x && p.y - 2 >= mn_y) {
        ans_nw.add(Point(p.x + side + 1, p.y - 2), 1);
        if (check(ans_nw) && ans_nw < ans) {
            ans = ans_nw;
        }
    } else if (p.x + side + 2 <= mx_x && p.y + side + 2 <= mx_y) {
        ans_nw.add(Point(p.x + side + 1, p.y + side + 1), 1);
        if (check(ans_nw) && ans_nw < ans) {
            ans = ans_nw;
        }
    } else {
        exit(1);
    }
    return ans;
}

Answer get_ans(int n, vector<Point> a) {
    auto check = [&](Answer ans) -> bool {
        for (int i = 0; i < 3; ++i) {
            if (ans.squares[i].first.x < -vl || ans.squares[i].first.x > vl) {
                return false;
            }
            if (ans.squares[i].first.y < -vl || ans.squares[i].first.y > vl) {
                return false;
            }
        }
        for (int i = 0; i < 3; ++i) {
            for (int j = i + 1; j < 3; ++j) {
                if (min(ans.squares[i].first.x + ans.squares[i].second, ans.squares[j].first.x + ans.squares[j].second) >= max(ans.squares[i].first.x, ans.squares[j].first.x) &&
                    min(ans.squares[i].first.y + ans.squares[i].second, ans.squares[j].first.y + ans.squares[j].second) >= max(ans.squares[i].first.y, ans.squares[j].first.y)) {
                    return false;
                }
            }
        }
        return true;
    };

    sort(a.begin(), a.end(), [&](Point a, Point b) -> bool {
        return a.x < b.x;
    });
    Answer ans;
    ans.add(Point(0, 0), inf);
    int mn_y = inf, mx_y = -inf;
    for (int i = 0; i < n; ++i) {
        mn_y = min(mn_y, a[i].y);
        mx_y = max(mx_y, a[i].y);
        if (i == n - 1 || a[i].x == a[i + 1].x) {
            continue;
        }
        vector<Point> b;
        for (int j = i + 1; j < n; ++j) {
            b.push_back(a[j]);
        }
        Answer ans1_ans = split2(b, a[i].x, vl, -vl, vl);
        for (int j = 0; j < (int)b.size(); ++j) {
            swap(b[j].x, b[j].y);
        }
        Answer ans2_ans = split2(b, -vl, vl, a[i].x, vl);
        for (int i = 0; i < 2; ++i) {
            swap(ans2_ans.squares[i].first.x, ans2_ans.squares[i].first.y);
        }
        if (ans2_ans < ans1_ans) {
            ans1_ans = ans2_ans;
        }
        int side = max(1LL, max(a[i].x - a[0].x, mx_y - mn_y));
        ans1_ans.add(Point(a[i].x - side, mn_y), side);
        if (ans1_ans < ans) {
            ans = ans1_ans;
        }
    }
    int side = max(1LL, max(a[n - 1].x - a[0].x, mx_y - mn_y));
    Point p(a[0].x, mn_y);
    Answer ans_nw;
    ans_nw.add(p, side);
    if (p.x - 4 >= -vl && p.y - 4 >= -vl) {
        ans_nw.add(Point(p.x - 2, p.y - 2), 1);
        ans_nw.add(Point(p.x - 4, p.y - 4), 1);
        if (ans_nw < ans) {
            ans = ans_nw;
        }
    } else if (p.x - 4 >= -vl && p.y + 4 <= vl) {
        ans_nw.add(Point(p.x - 2, p.y + 1), 1);
        ans_nw.add(Point(p.x - 4, p.y + 3), 1);
        if (ans_nw < ans) {
            ans = ans_nw;
        }
    } else if (p.x + 4 <= vl && p.y - 4 >= vl) {
        ans_nw.add(Point(p.x + 1, p.y - 2), 1);
        ans_nw.add(Point(p.x + 3, p.y - 4), 1);
        if (ans_nw < ans) {
            ans = ans_nw;
        }
    } else if (p.x + 4 <= vl && p.y + 4 <= vl) {
        ans_nw.add(Point(p.x + 1, p.y + 1), 1);
        ans_nw.add(Point(p.x + 3, p.y + 3), 1);
        if (ans_nw < ans) {
            ans = ans_nw;
        }
    } else {
        exit(1);
    }

    mn_y = inf, mx_y = -inf;
    for (int i = n - 1; i > 0; --i) {
        mn_y = min(mn_y, a[i].y);
        mx_y = max(mx_y, a[i].y);
        if (i == 0 || a[i].x == a[i - 1].x) {
            continue;
        }
        vector<Point> b;
        for (int j = 0; j < i; ++j) {
            b.push_back(a[j]);
        }
        Answer ans1_ans = split2(b, -vl, a[i].x, -vl, vl);
        for (int j = 0; j < (int)b.size(); ++j) {
            swap(b[j].x, b[j].y);
        }
        Answer ans2_ans = split2(b, -vl, vl, -vl, a[i].x);
        for (int i = 0; i < 2; ++i) {
            swap(ans2_ans.squares[i].first.x, ans2_ans.squares[i].first.y);
        }
        if (ans2_ans < ans1_ans) {
            ans1_ans = ans2_ans;
        }
        int side = max(1LL, max(a[n - 1].x - a[i].x, mx_y - mn_y));
        ans1_ans.add(Point(a[i].x, mn_y), side);
        if (ans1_ans < ans) {
            ans = ans1_ans;
        }
    }

    assert(check(ans));

    return ans;
}

void solve() {
    int n, k;
    cin >> n >> k;
    vector<Point> a(n);
    for (int i = 0; i < n; ++i) {
        cin >> a[i].x >> a[i].y;
    }
    if (k == 1) {
        int mn_x = inf, mx_x = -inf, mn_y = inf, mx_y = -inf;
        for (int i = 0; i < n; ++i) {
            mn_x = min(mn_x, a[i].x);
            mx_x = max(mx_x, a[i].x);
            mn_y = min(mn_y, a[i].y);
            mx_y = max(mx_y, a[i].y);
        }
        cout << mn_x << ' ' << mn_y << ' ' << max(1LL, max(mx_x - mn_x, mx_y - mn_y)) << '\n';
    } else if (k == 2) {
        auto ans1 = split2(a, -vl, vl, -vl, vl);
        for (int i = 0; i < n; ++i) {
            swap(a[i].x, a[i].y);
        }
        auto ans2 = split2(a, -vl, vl, -vl, vl);
        for (int i = 0; i < k; ++i) {
            swap(ans2.squares[i].first.x, ans2.squares[i].first.y);
        }
        if (ans1 < ans2) {
            for (int i = 0; i < k; ++i) {
                cout << ans1.squares[i].first.x << ' ' << ans1.squares[i].first.y << ' ' << ans1.squares[i].second << '\n';
            }
        } else {
            for (int i = 0; i < k; ++i) {
                cout << ans2.squares[i].first.x << ' ' << ans2.squares[i].first.y << ' ' << ans2.squares[i].second << '\n';
            }
        }
    } else if (k == 3) {
        auto ans1 = get_ans(n, a);
        for (int i = 0; i < n; ++i) {
            swap(a[i].x, a[i].y);
        }
        auto ans2 = get_ans(n, a);
        for (int i = 0; i < k; ++i) {
            swap(ans2.squares[i].first.x, ans2.squares[i].first.y);
        }
        auto check = [&](Answer ans) -> bool {
            for (int i = 0; i < k; ++i) {
                if (ans.squares[i].first.x < -vl || ans.squares[i].first.x > vl) {
                    return false;
                }
                if (ans.squares[i].first.y < -vl || ans.squares[i].first.y > vl) {
                    return false;
                }
            }
            for (int i = 0; i < k; ++i) {
                for (int j = i + 1; j < k; ++j) {
                    if (min(ans.squares[i].first.x + ans.squares[i].second, ans.squares[j].first.x + ans.squares[j].second) >= max(ans.squares[i].first.x, ans.squares[j].first.x) &&
                        min(ans.squares[i].first.y + ans.squares[i].second, ans.squares[j].first.y + ans.squares[j].second) >= max(ans.squares[i].first.y, ans.squares[j].first.y)) {
                        return false;
                    }
                }
            }
            return true;
        };
        assert(check(ans1));
        assert(check(ans2));
        if (ans1 < ans2) {
            for (int i = 0; i < k; ++i) {
                cout << ans1.squares[i].first.x << ' ' << ans1.squares[i].first.y << ' ' << ans1.squares[i].second << '\n';
            }
        } else {
            for (int i = 0; i < k; ++i) {
                cout << ans2.squares[i].first.x << ' ' << ans2.squares[i].first.y << ' ' << ans2.squares[i].second << '\n';
            }
        }
    }
}

signed main() {
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    int t = 1;
    // cin >> t;
    while (t--) {
        solve();
    }
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 14 ms 1880 KB Output is correct
8 Correct 15 ms 1884 KB Output is correct
9 Correct 15 ms 1884 KB Output is correct
10 Correct 16 ms 1880 KB Output is correct
11 Correct 15 ms 1880 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 344 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 45 ms 6672 KB Output is correct
11 Correct 44 ms 6648 KB Output is correct
12 Correct 47 ms 6664 KB Output is correct
13 Correct 44 ms 6668 KB Output is correct
14 Correct 49 ms 6648 KB Output is correct
15 Correct 44 ms 6644 KB Output is correct
16 Correct 45 ms 6644 KB Output is correct
17 Correct 41 ms 6140 KB Output is correct
18 Correct 39 ms 5980 KB Output is correct
19 Correct 36 ms 5468 KB Output is correct
20 Correct 36 ms 5760 KB Output is correct
21 Correct 53 ms 6648 KB Output is correct
22 Correct 44 ms 6652 KB Output is correct
23 Correct 43 ms 6656 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Incorrect 0 ms 348 KB Output isn't correct
15 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 260 ms 664 KB Output is correct
2 Correct 267 ms 596 KB Output is correct
3 Correct 259 ms 596 KB Output is correct
4 Correct 261 ms 592 KB Output is correct
5 Correct 255 ms 536 KB Output is correct
6 Correct 261 ms 668 KB Output is correct
7 Correct 267 ms 592 KB Output is correct
8 Correct 273 ms 592 KB Output is correct
9 Correct 259 ms 860 KB Output is correct
10 Correct 259 ms 668 KB Output is correct
11 Correct 264 ms 548 KB Output is correct
12 Correct 269 ms 852 KB Output is correct
13 Correct 214 ms 592 KB Output is correct
14 Correct 207 ms 652 KB Output is correct
15 Correct 215 ms 852 KB Output is correct
16 Correct 210 ms 652 KB Output is correct
17 Correct 210 ms 596 KB Output is correct
18 Correct 223 ms 664 KB Output is correct
19 Correct 210 ms 532 KB Output is correct
20 Correct 209 ms 656 KB Output is correct
21 Incorrect 242 ms 596 KB Output isn't correct
22 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 260 ms 540 KB Output is correct
2 Correct 260 ms 596 KB Output is correct
3 Correct 259 ms 592 KB Output is correct
4 Correct 267 ms 596 KB Output is correct
5 Correct 267 ms 532 KB Output is correct
6 Correct 259 ms 596 KB Output is correct
7 Correct 264 ms 540 KB Output is correct
8 Correct 259 ms 592 KB Output is correct
9 Correct 247 ms 556 KB Output is correct
10 Correct 248 ms 856 KB Output is correct
11 Correct 262 ms 556 KB Output is correct
12 Correct 269 ms 596 KB Output is correct
13 Correct 267 ms 812 KB Output is correct
14 Execution timed out 3059 ms 8268 KB Time limit exceeded
15 Halted 0 ms 0 KB -