Submission #99521

# Submission time Handle Problem Language Result Execution time Memory
99521 2019-03-04T16:32:18 Z naoai Tropical Garden (IOI11_garden) C++14
69 / 100
5000 ms 89608 KB
#include <bits/stdc++.h>
#include "garden.h"
#include "gardenlib.h"

using namespace std;

#define fin cin
#define fout cout
//ifstream fin("x.in"); ofstream fout("x.out");

typedef long long i64;
const int nmax = 15e4 + 5;
const int mmax = 2 * 15e4 + nmax + 5;
const int qmax = 2000;
const pair<int, int> nul = {-1, -1};

static vector<int> c[mmax + 1];
static pair<int, int> pe_ciclu[mmax + 1];
static int reprezentant[mmax + 1], h[mmax + 1];

static bool finalok[mmax + 1];

static vector<int> g[mmax + 1], gt[mmax + 1];
static vector<pair<int, int>> gorig[nmax + 1];

static int top, stk[mmax + 1];

static vector<pair<int, int>> qry[mmax + 1];
static int rasp[qmax + 1];

bool cmp (pair<int, int> a, pair<int, int> b) {
    return a.second < b.second;
}

int best (int nod, int indm) {
    if (gorig[nod].size() == 1)
        return gorig[nod][0].second;
    if (gorig[nod][0].second / 2 != indm / 2)
        return gorig[nod][0].second;
    else
        return gorig[nod][1].second;
}

void fa_graf (int N, int &M, int P, int R[][2], int Q, int G[]) {
    for (int i = 0; i < M; ++ i) {
        gorig[R[i][0]].push_back({R[i][1], 2 * i});
        gorig[R[i][1]].push_back({R[i][0], 2 * i + 1});

        if (R[i][1] == P)
            finalok[2 * i] = 1;
        if (R[i][0] == P)
            finalok[2 * i + 1] = 1;
    }

    for (int i = 0; i < N; ++ i) {
        sort(gorig[i].begin(), gorig[i].end(), cmp);
    }

    // muchiile de functie
    for (int i = 0; i < M; ++ i) {
        int find_edge = best(R[i][1], 2 * i);
        g[2 * i].push_back(find_edge);

        find_edge = best(R[i][0], 2 * i + 1);
        g[2 * i + 1].push_back(find_edge);
    }

    // 0 ... 2M - 1 sunt muchiile
    // 2M... 2M + N - 1 sunt nodurile de start

    // adauga noduri suplimentare de start
    for (int i = 0; i < N; ++ i) {
        if (gorig[i].size())
            g[2 * M + i].push_back(gorig[i][0].second);
    }

    M *= 2;
}

void ciclu (int nod, int tata, int ind) {
    c[ind].push_back(nod);
    pe_ciclu[nod] = {ind, c[ind].size() - 1};

    for (auto i : g[nod]) {
        if (pe_ciclu[i] != nul && pe_ciclu[i].first != ind) {
            ciclu(i, nod, ind);
        }
    }
}

int cauta_ciclii (int N) {
    // sortare topologica ca sa scot arborii
    vector<int> grad(N, 0);
    for (int i = 0; i < N; ++ i) {
        for (auto j : g[i])
            ++ grad[j];
    }

    queue<int> q;
    for (int i = 0; i < N; ++ i) {
        if (grad[i] == 0)
            q.push(i);
    }

    while (!q.empty()) {
        int x = q.front();
        q.pop();

        pe_ciclu[x] = {-1, -1};
        for (auto i : g[x]) {
            -- grad[i];
            if (grad[i] == 0)
                q.push(i);
        }
    }

    // determin care sunt ciclii
    int cycles = 0;
    for (int i = 0; i < N; ++ i) {
        if (pe_ciclu[i] != nul && pe_ciclu[i].first == 0) {
            ++ cycles;
            ciclu(i, -1, cycles);
        }
    }
    return cycles;
}

void dfs (int nod, int tata) {
    for (auto i : gt[nod]) {
        if (pe_ciclu[i] == nul && i != tata) {
            reprezentant[i] = reprezentant[nod];
            h[i] = h[nod] + 1;
            dfs(i, nod);
        }
    }
}

void det_arbori (int N, int cnt) {
    for (int i = 0; i < N; ++ i) {
        for (auto j : g[i]) {
            gt[j].push_back(i);
        }
    }

    for (int u = 1; u <= cnt; ++ u) {
        for (auto i : c[u]) {
            reprezentant[i] = i;
            dfs(i, -1);
        }
    }
}

void solve (int nod, int tata) {
    stk[top ++] = nod;
    for (auto i : qry[nod]) {
        rasp[i.second] += finalok[stk[i.first]];
    }

    for (auto i : gt[nod]) {
        if (pe_ciclu[i] == nul && i != tata) {
            solve(i, nod);
        }
    }

    -- top;
}

void count_routes(int N, int M, int P, int R[][2], int Q, int G[])
{
    fa_graf(N, M, P, R, Q, G);
    int cnt = cauta_ciclii(M + N);
    det_arbori(M + N, cnt);

    for (int j = M; j < M + N; ++ j) {
        for (int i = 0; i < Q; ++ i) {
            // pot ajunge de la j in g[i] pasi la o muchie care da in nodul P?

            if (G[i] >= h[j]) { // intru pe ciclu
                pair<int, int> pos = pe_ciclu[reprezentant[j]];
                int final_node = c[pos.first][(pos.second + G[i] - h[j]) % c[pos.first].size()];

                if (finalok[final_node] == 1)
                    ++ rasp[i];
            } else { // tre sa ridic j cu G[i]
                qry[j].push_back({h[j] - G[i], i});
            }
        }
    }

    for (int i = 1; i <= cnt; ++ i) {
        for (auto j : c[i]) {
            solve(j, -1);
        }
    }

    for(int i = 0; i < Q; i ++)
        answer(rasp[i]);
}
# Verdict Execution time Memory Grader output
1 Correct 45 ms 46456 KB Output is correct
2 Correct 45 ms 46372 KB Output is correct
3 Correct 45 ms 46456 KB Output is correct
4 Correct 44 ms 46128 KB Output is correct
5 Correct 44 ms 46300 KB Output is correct
6 Correct 46 ms 46696 KB Output is correct
7 Correct 44 ms 46356 KB Output is correct
8 Correct 45 ms 46444 KB Output is correct
9 Correct 51 ms 47476 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 45 ms 46456 KB Output is correct
2 Correct 45 ms 46372 KB Output is correct
3 Correct 45 ms 46456 KB Output is correct
4 Correct 44 ms 46128 KB Output is correct
5 Correct 44 ms 46300 KB Output is correct
6 Correct 46 ms 46696 KB Output is correct
7 Correct 44 ms 46356 KB Output is correct
8 Correct 45 ms 46444 KB Output is correct
9 Correct 51 ms 47476 KB Output is correct
10 Correct 45 ms 46252 KB Output is correct
11 Correct 75 ms 51832 KB Output is correct
12 Correct 141 ms 57416 KB Output is correct
13 Correct 137 ms 74856 KB Output is correct
14 Correct 433 ms 79192 KB Output is correct
15 Correct 450 ms 80252 KB Output is correct
16 Correct 395 ms 74464 KB Output is correct
17 Correct 371 ms 72804 KB Output is correct
18 Correct 144 ms 57152 KB Output is correct
19 Correct 437 ms 79100 KB Output is correct
20 Correct 451 ms 80276 KB Output is correct
21 Correct 392 ms 74896 KB Output is correct
22 Correct 379 ms 73580 KB Output is correct
23 Correct 469 ms 82404 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 45 ms 46456 KB Output is correct
2 Correct 45 ms 46372 KB Output is correct
3 Correct 45 ms 46456 KB Output is correct
4 Correct 44 ms 46128 KB Output is correct
5 Correct 44 ms 46300 KB Output is correct
6 Correct 46 ms 46696 KB Output is correct
7 Correct 44 ms 46356 KB Output is correct
8 Correct 45 ms 46444 KB Output is correct
9 Correct 51 ms 47476 KB Output is correct
10 Correct 45 ms 46252 KB Output is correct
11 Correct 75 ms 51832 KB Output is correct
12 Correct 141 ms 57416 KB Output is correct
13 Correct 137 ms 74856 KB Output is correct
14 Correct 433 ms 79192 KB Output is correct
15 Correct 450 ms 80252 KB Output is correct
16 Correct 395 ms 74464 KB Output is correct
17 Correct 371 ms 72804 KB Output is correct
18 Correct 144 ms 57152 KB Output is correct
19 Correct 437 ms 79100 KB Output is correct
20 Correct 451 ms 80276 KB Output is correct
21 Correct 392 ms 74896 KB Output is correct
22 Correct 379 ms 73580 KB Output is correct
23 Correct 469 ms 82404 KB Output is correct
24 Correct 49 ms 46164 KB Output is correct
25 Correct 658 ms 52200 KB Output is correct
26 Correct 1121 ms 57956 KB Output is correct
27 Correct 2543 ms 75416 KB Output is correct
28 Correct 4024 ms 79864 KB Output is correct
29 Correct 4301 ms 81136 KB Output is correct
30 Correct 2808 ms 75632 KB Output is correct
31 Correct 2520 ms 73804 KB Output is correct
32 Correct 1133 ms 58544 KB Output is correct
33 Correct 4125 ms 80008 KB Output is correct
34 Correct 4306 ms 81020 KB Output is correct
35 Correct 2784 ms 75340 KB Output is correct
36 Correct 2514 ms 73908 KB Output is correct
37 Correct 4374 ms 82852 KB Output is correct
38 Execution timed out 5065 ms 89608 KB Time limit exceeded