Submission #991229

#TimeUsernameProblemLanguageResultExecution timeMemory
991229model_codePortal (BOI24_portal)C++17
100 / 100
68 ms2144 KiB
#include <iostream> #include <stdexcept> #include <vector> using namespace std; struct Vector2D { int64_t x, y; Vector2D(int64_t x, int64_t y) : x(x), y(y) {} Vector2D() : x(0), y(0) {} }; struct Parallelogram { Vector2D a, b; int64_t area() const { return abs(a.x * b.y - a.y * b.x); } }; int64_t gcd(int64_t a, int64_t b) { if (b == 0) { return a; } return gcd(b, a % b); } // gcd for colinear 2d vectors Vector2D gcd(const Vector2D a, const Vector2D b) { return {gcd(a.x, b.x), gcd(a.y, b.y)}; } bool colinear(Vector2D a, Vector2D b) { return Parallelogram{a, b}.area() == 0; } Vector2D operator*(const int64_t scalar, const Vector2D &p) { return Vector2D(scalar * p.x, scalar * p.y); } Vector2D operator-(const Vector2D &p1, const Vector2D &p2) { return Vector2D(p1.x - p2.x, p1.y - p2.y); } Parallelogram gcd(Parallelogram p, Vector2D q) { if (colinear(p.a, p.b)) { p.a = gcd(p.a, p.b); p.b = q; return p; } if (colinear(p.a, q)) { p.a = gcd(p.a, q); return p; } if (colinear(p.b, q)) { p.b = gcd(p.b, q); return p; } // We want to find k and l such that // q = k * p.a + l * p.b + remainder // The remainder should be inside p // q, p.a, p.b are not colinear and 2d vectors as we checked that before int64_t denominator = p.a.x * p.b.y - p.a.y * p.b.x; int64_t k = (q.x * p.b.y - q.y * p.b.x) / denominator; int64_t l = (p.a.x * q.y - p.a.y * q.x) / denominator; Vector2D remainder = q - k * p.a - l * p.b; Parallelogram new_p = {p.a, remainder}; if (p.area() <= new_p.area()) { throw runtime_error("The parallelogram did not decrease in size. This " "should never happen."); } return gcd(new_p, p.b); } int main() { size_t N; cin >> N; if (N <= 2) { cout << -1 << endl; return 0; } vector<Vector2D> portals(N); for (size_t i = 0; i < N; i++) { cin >> portals[i].x >> portals[i].y; } for (size_t i = 0; i < portals.size(); i++) { portals[i].x -= portals[N - 1].x; portals[i].y -= portals[N - 1].y; } portals.pop_back(); // Try to form a parallelegram with non-0 area Parallelogram p; p.a = portals[0]; for (size_t i = 1; i < portals.size(); i++) { swap(portals[1], portals[i]); p.b = portals[1]; if (p.area() != 0) { break; } } if (p.area() == 0) { // All portals are colinear, so we can use infinitely many colours cout << -1 << endl; return 0; } for (size_t i = 2; i < N; i++) { // Compute the gcd of all portal p = gcd(p, portals[i]); } // The solution is the area of the gcd parallelogram cout << p.area() << endl; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...